
Automated Verification of an In-Production
DNS Authoritative Engine

Naiqian Zheng∗
Peking University

Mengqi Liu∗
Alibaba Cloud

Yuxing Xiang
Peking University

Linjian Song
Alibaba Cloud

Dong Li
Alibaba Cloud

Feng Han
Alibaba Cloud

Nan Wang
Alibaba Cloud

Yong Ma
Alibaba Cloud

Zhuo Liang
Alibaba Cloud

Dennis Cai
Alibaba Cloud

Ennan Zhai
Alibaba Cloud

Xuanzhe Liu
Peking University

Xin Jin
Peking University

Abstract
This paper presents DNS-V, a verification framework for
our in-production DNS authoritative engine, which is the
core of our DNS service. The key idea for automated verifica-
tion in general is based on the layered verification principle.
However, we face the challenge that our in-production DNS
authoritative engine lacks modularity, more specifically, as
can be seen with unclean interfaces and poor data structure
encapsulation. This makes the layered verification hard to
apply. To address this challenge, we propose a summariza-
tion approach that performs full-path symbolic execution
to accumulate all path conditions and computation effects,
and then represents a module’s behavior in an abstract form
as a set of input-effect pairs. In addition, for portability to
future iterated versions of our DNS authoritative engine, we
identify common dependency library modules that remain
stable across different versions, and carefully design their
abstractions to make them amenable to automated reason-
ing. Our framework has been successful in identifying and
preventing tens of critical bugs in different versions of our
DNS authoritative engine from reaching production, with a
porting effort of less than one person-week.

CCS Concepts: • Software and its engineering→ Soft-
ware verification and validation; •Networks→Naming
and addressing.

∗The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’23, October 23–26, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0229-7/23/10. . . $15.00
https://doi.org/10.1145/3600006.3613153

Keywords: Verification; DomainName System; FormalMeth-
ods

ACM Reference Format:
Naiqian Zheng, Mengqi Liu, Yuxing Xiang, Linjian Song, Dong Li,
Feng Han, Nan Wang, Yong Ma, Zhuo Liang, Dennis Cai, Ennan
Zhai, Xuanzhe Liu, and Xin Jin. 2023. Automated Verification of
an In-Production DNS Authoritative Engine. In ACM SIGOPS 29th
Symposium on Operating Systems Principles (SOSP ’23), October 23–
26, 2023, Koblenz, Germany. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3600006.3613153

1 Introduction
Domain Name System (DNS) is one of the most critical infras-
tructure services on the Internet. It translates human-friendly
domain names into IP addresses that computers and routers
use to communicate with each other, thus making websites
and services on the Internet easily accessible to users. As one
of the largest cloud providers in the world, Alibaba Cloud
operates a highly available and scalable DNS service that
provides managed authoritative for both public and private
DNS zones. Our DNS service is deployed globally, serving
hundreds of millions of records and 𝑂 (1012) queries per day.

As the core of DNS service, the DNS authoritative engine
plays a vital role: it is responsible for matching an incom-
ing query with locally-held authoritative DNS records and
computing the content of the DNS response. However, it is
hard to implement the DNS authoritative engine correctly,
since the DNS authoritative protocol is complex. In partic-
ular, many different types of DNS authoritative records are
tangled with their diverse processing logics, resulting in com-
plex function logical relations in the implementation of the
DNS authoritative engine.

The implementation correctness of the DNS authoritative
engine is crucial not only for the entire DNS service, but also
for the proper functioning of the Internet. On the one hand,
failures of the DNS authoritative engine could disconnect
arrays of websites and services from the Internet, resulting
in huge business losses [1–3, 5]. For example, on Oct. 7th,
2021, the .club and .hsbc authoritative servers responded
with SERVFAIL messages. This failure caused a three-hour
outage of resolving .club and .hsbc domains [4]. On the

80

https://doi.org/10.1145/3600006.3613153
https://doi.org/10.1145/3600006.3613153
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600006.3613153&domain=pdf&date_stamp=2023-10-23

SOSP ’23, October 23–26, 2023, Koblenz, Germany N. Zheng et al.

other hand, incorrect DNS authoritative results may direct
users to fake websites and expose them to security risks.
Formal verification of the source code is a well-known

methodology to guarantee the absence of bugs. In particu-
lar, verifying the functional correctness of a system involves
defining a formal specification that describes the expected
behavior of this system, and then using a verifier to rigor-
ously check that every possible execution path in the source
code meets this specification. A formally verified software is
bug-free with respect to its specification.

Therefore,We decided to build DNS-V, a verification frame-
work that not only checks our in-production DNS authorita-
tive engine automatically during its development, but is also
easily portable to the iterated versions of our DNS authorita-
tive engine. However, building such a verification framework
requires us to address an important challenge.

Technical challenge: ourDNS authoritative engine lacks
modularity, more specifically, as can be seen with un-
clean interface and poor data structure encapsulation.
This makes the layered verification hard to apply. Lay-
ered verification [20, 22] is a key insight in recent advance-
ments of formal verification for large systems. To tackle the
complexity of verifying large systems, this approach decom-
poses a system into a set of layers. Each layer encapsulates
all behaviors of its source code into an abstract specification,
and proves that invoking this specification is equivalent to
invoking the corresponding source code. In this way, the
source code within each layer can be verified independently,
since it only depends on abstract specifications of lower-layer
functions.
A fundamental prerequisite of this approach is that the

source code should follow a layered design pattern, thus
allowing us to define a concise specification for each layer.
Prior work [18, 20–22, 32, 34, 35, 39, 44, 51, 52, 57] typically
builds software from scratch (or retrofits existing ones) to
ensure that it is designed with modularity and consists of
well-defined interfaces betweenmodules, making the layered
verification straightforward and effective.

The formal verification of our DNS authoritative engine,
however, does not have this flexibility, making it a poor target
for layered verification. First, even though the intended be-
haviors of our DNS authoritative engine arewell documented
in production, the functionalities of individual modules are
typically ambiguous or unclear. Thus, the key step of defin-
ing each module’s expected behavior is hard, if possible at all.
This is partly due to the fact that the in-production system
is the result of numerous rounds of iterations, containing
both legacy code and small increments adding new features.
The interface keeps getting increasingly more intricate un-
less a major refactoring happens. Second, our in-production
DNS authoritative engine is not designed with modularity
in mind. It could have tightly-coupled modules and data
structures, making it difficult to be divided into layers. As

a comparison, Gu et al. [20] report that a software module
suitable for verification should encapsulate its internal data
and only expose well-defined interface functions, thus ensur-
ing that external code always has a consistent abstract view
of this module. Our in-production DNS authoritative engine,
however, violates this assumption, making the abstraction
process challenging.

Our verification framework. In this paper, we still fol-
low the layered verification principle to break down the
complexity of the in-production system, building a practical
framework to the verification of our DNS authoritative en-
gine. We use symbolic execution [26] to achieve automated
reasoning. We address the above-mentioned technical chal-
lenge in verifying in-production DNS authoritative engine
with the key idea of summarization.

We extend the layered approach by automatically comput-
ing summary specifications formodules that lackwell-defined
functionality. More specifically, summarization works by per-
forming full-path symbolic execution and accumulating all
path conditions and computation effects (e.g., writes to mem-
ory, return value, etc.). It then represents a module’s behavior
in an abstract form as the set of input-effect pairs collected
above (see §6.4 for an example). In this way, we keep the
verification modular and efficient, while avoiding the diffi-
culty of manually designing abstractions for poorly-designed
in-production modules (§5.3). Note that summarization is
challenging in general since a module’s computation effects
can be rather complex. However, we observe that resolu-
tion modules in the DNS authoritative engine follow limited
effect patterns that make them amenable to automated sum-
marization (§4.2). Further, we design our verifier’s memory
model in a flexible way to accommodate poor data structure
encapsulation in in-production DNS authoritative engine. In
particular, a data structure can be partially abstracted and
abstract specifications no longer have to distinguish between
abstract and concrete data (§5.1).
By adopting this idea, we build DNS-V, a verification

framework for our in-house developed DNS authoritative
engine. In particular, we design a top-level specification for
the core logic of our DNS authoritative engine, formally ver-
ify a base version of our DNS authoritative engine against
this specification, and keep porting the verification to newer
versions. To enable efficient summarization for resolution
modules, we identify common dependency library modules
that remain stable across different implementation versions,
and carefully design their abstractions. In particular, we de-
sign verification-friendly encodings for DNS-related data
structures and restrict branch conditions in the specification
to simple linear integer arithmetic (§6.3). Our experience
shows that DNS-V helps us keep the porting effort below
one person-week, which is fast enough to keep up with the
evolution of our DNS authoritative engine. As we apply
DNS-V into the development workflow, we have found and

81

Verifying In-Production DNS SOSP ’23, October 23–26, 2023, Koblenz, Germany

prevented tens of critical bugs in different versions of our
production DNS authoritative engine. We also adapt the
top-level specification to accommodate new features. This
process is still ongoing with the active development and
maintenance of our DNS service.

2 Background
DNS translates human-readable domain names into machine-
readable IP addresses. As the core of DNS, the DNS authori-
tative engine matches incoming queries with local authorita-
tive DNS records and composes the DNS response. Since this
paper focuses on the DNS authoritative engine, we detail
important terminologies below.

Domain name, zone, and resource records. A domain
name consists of a list of labels, separated by the dot symbol.
This is similar to the structure of the path name in a file sys-
tem but in reverse order. DNS utilizes this tree-like structure
to partition the domain name space among various service
providers. For example, a web service that owns the domain
name “example.com” has all names within this sub-domain
tree (e.g., “foo.example.com”). All these names form a zone.
The domain owner configures subdomains within a zone by
registering this zone along with its resource records onto
the authoritative engine. A resource record (RR) contains the
following major components.
• Rname: the domain name of this record.
• Type: the type of the resource, e.g., A is for IPv4 address
and AAAA is for IPv6 address.

• Rdata: the data content of this resource, e.g., the exact IPv4
address for an A-type RR.

Authoritative name resolution: DNSquery and response.
A DNS query contains the requested domain name called
qname, and the requested RR type called qtype. Upon receiv-
ing a query, the authoritative engine fetches the relevant
zone configurations and looks up RRs that match both the
qname and the qtype. It then composes a response message,
containing the query, and the following important fields.
• Response code (rcode): whether this query is successful,
and possible reasons in case of failure.

• Authoritative answer (AA): a flag indicating whether the
queried nameserver holds authoritative RRs for this query.

• Answer section: RRs that answer the query.
• Authority section: RRs that provide information about the
authority of nameservers.

• Additional section: RRs that in most cases provide optional
information to the query.

......

Execution on code

Execution on spec

RR

Figure 1. The refinement proof between a piece of concrete
code and its abstract specification.

3 Challenges with Verifying In-Production
DNS Authoritative Engine

Verifying our entire DNS software, which contains 𝑂 (105)
lines of code in Go, is impractical and unnecessary. As above-
mentioned, the DNS authoritative engine is the core of the
DNS service; thus, we construct a verifier for the DNS au-
thoritative engine.1

3.1 Our Goals

Goal 1: Formal verification. Our first goal is to formally
verify our in-production DNS authoritative engine. Our DNS
authoritative engine consists of 2,000 LOC in Go and makes
intensive use of complex control flows, such as nested un-
bounded loops, that make its automated reasoning challeng-
ing. Our verification specifically targets two properties:
• Safety: the DNS authoritative engine should not cause
runtime error given any incoming qname and qtype.

• Functional correctness: the returned DNS response is cor-
rect for any query, with respect to a top-level specification
that we develop.

Goal 2: Great portability to iterated versions. Our verifi-
cation should not focus on only a certain version of our DNS
authoritative engine. To accommodate the diverse needs of
our customers, our developers iterate the DNS authoritative
engine frequently. Our experience shows that every version
of the engine will almost always contain bugs, either caused
by code increments adding new features or by imperfect
patches intending to fix previous bugs. Rather, we observe
that the practical way of ensuring the safety and correctness
of the DNS authoritative engine is to perform formal veri-
fication on it in a continuous manner with the iteration of
its source code versions. In order to achieve this, we need
to build our verification framework to be highly adaptive to
accommodate source code updates with low effort.

1As a comparison, other components (e.g., those for encoding and decoding
packets, and logging) exhibit relatively more straightforward functionalities
and have less influence on the correctness of DNS responses. In Alibaba
Cloud, traditional testing techniques for these modules are enough.

82

SOSP ’23, October 23–26, 2023, Koblenz, Germany N. Zheng et al.

3.2 Preliminary: Refinement & Symbolic Execution

Refinement-based verification [8, 20, 33, 40, 56]. The
formal verification of safety and functional correctness prop-
erties is usually achieved by building refinement proofs,
whether manually or automatically. This involves a piece
of concrete code code, its abstract specification spec, and
a simulation relation R that associates concrete states with
abstract ones. As shown in Figure 1, assume that the initial
concrete state 𝑠0 and abstract state 𝑠′0 satisfy 𝑅(𝑠0, 𝑠′0). Also,
assume that executing code results in the final state 𝑠𝑓 . If
there exists 𝑠′

𝑓
such that it is the result of executing spec, and

𝑅(𝑠𝑓 , 𝑠′𝑓) also holds, then spec is indeed a faithful abstraction
of the code’s behaviors.

Symbolic execution. Symbolic execution [26] systemat-
ically explores possible execution paths of a program by
replacing concrete inputs with symbolic variables. It gen-
erates symbolic expressions for each path, representing its
constraints and effects. Full-path symbolic execution is often
used by automated verifiers to compute the initial-state-to-
final-state transition of a program, i.e., the relation between
𝑠0 and 𝑠𝑓 in Figure 1. Thus, it is an integral step in automating
the refinement verification.
Two factors affect the practicality of symbolic execution

techniques significantly: (1) the number of possible execution
paths decides the required time for symbolic execution to
fully explore a program’s behaviors, and (2) the complexity of
path constraints affects the overhead of invoking automated
solvers, or whether they are automatically solvable at all.

3.3 Challenges with Adopting Layered Verification
Layered verification [20, 21, 33] is considered as a key tech-
nique to automate large-scale system verification [39]. How-
ever, our in-production DNS authoritative engine lacks mod-
ularity, as can be seen with the unclean interface and poor
data structure encapsulation. This is the key difficulty of in-
production system verification compared with state-of-the-
art verification. The latter, i.e., previous efforts [20–22, 39],
built their systems from scratch to specifically follow a lay-
ered design, enabling these systems to fit the layered verifi-
cation methodology.

Unclean interface & function division. Applying layered
verification relies on abstract specifications to encapsulate
the behavior of each module. In other words, layered verifi-
cation works well if the source code indeed follows a layered
design pattern. Our in-production DNS authoritative engine,
however, is not designed to prioritize modularity. Due to
the fact that our in-production DNS authoritative engine
evolves constantly, it contains both legacy code and small
increments adding new features. The interface also keeps get-
ting increasingly more intricate unless a major refactoring
happens. For example, our DNS authoritative engine focuses
on computing matching results for incoming queries, while

type hstack list[T]
func (s *hstack) push(t *T){
hstack.append(t)

}

func (s *hstack) isFull(){
return len(hstack)

== MAX_SIZE
}

type lstack struct{
data [MAX_SIZE]T
level int

}

func (s *lstack) push(t *T){
s.data[level] = t
s.level++

}

func (s *lstack) isFull(){
return s.level

== MAX_SIZE
}

Figure 2. A properly encapsulated custom stack implemen-
tation (bottom half) and abstract specification (top half).

type hstack list[T]
func (s *hstack) push(t *T){
hstack.append(t)

}

type lstack struct{
data [MAX_SIZE]T
level int

}

func (s *lstack) push(t *T){
s.data[level] = t
s.level++

}

// external call:
// direct access to level
if s.level < MAX_SIZE {
s.push(t)

}

N/A
(Not encapsulated)

Figure 3. A poorly encapsulated custom stack implementa-
tion (bottom half). Lifting it into an abstract specification is
challenging because both the abstract function (push) and
concrete code (bottom right) access its internal field ‘level’.

different match types and resource record types require dif-
ferent processing logic. Its source code is full of control flags
and a function may exhibit different behaviors when invoked
from different execution paths. For such in-production soft-
ware, it is unrealistic to write an abstract specification for
every function (or module).

Poor data structure encapsulation. To encapsulate source-
code level details of a module into abstract specifications,
existing work requires that there is no external access to
internal data structures of a module. Rather, internal states
are exclusively maintained by the module’s own functions.
In this way, the entire data structure can be lifted into a
consistent abstract representation outside this module. Fig-
ure 2 uses a custom stack to illustrate proper data structure
encapsulation. Here, the internal state of the stack is only
accessible by its functions, push and isFull. In this way, it
is easy to prove that its specification (shown on the top half)
as an abstract list indeed captures the behavior of these two
operations.

However, this property does not hold in our DNS authorita-
tive engine. Production engineers may not always prioritize
clean encapsulation and may implement the above stack in a
slightly different way. As shown in Figure 3, while the push
operation is well-defined and encapsulates the data field,
external code still directly accesses the level field to check
whether the stack is full or not. This is problematic in a lay-
ered verification framework, which does not allow a field
to be maintained by both abstract functions and concrete
instructions. Such code patterns make it challenging to fit

83

Verifying In-Production DNS SOSP ’23, October 23–26, 2023, Koblenz, Germany

in-production programs into existing layered verification
frameworks directly.

3.4 Low-Level Implementation Makes Automated
Reasoning Difficult

Besides the lack-of-modularity problem, our in-production
DNS authoritative engine is filled with various low-level
implementations, which pose difficulty to automated verifi-
cation. Suppose a basic component in the DNS authoritative
engine is the comparison between two domain names. Our
developers intentionally choose to represent the domain
name using raw bytes instead of using high-level language
constructs, such as lists of strings. This avoids extra over-
head, but results in much more complexity for its symbolic
execution and automated reasoning.
Figure 4 shows the pseudo Go code for comparing two

domain names (adapted from our production program) when
the raw byte representation is used. Here, two names are com-
pared byte to byte from the last position, until they eventually
differ or when any one of them reaches the very beginning.
Depending on whether they are of equal length, or whether
they at least have one common label, this function returns
one of three possible results. Our DNS authoritative engine
contains a lot of similar low-level implementations, which
are invoked over and over by higher-level modules. This
significantly increases the difficulty of adopting automated
verification on the DNS authoritative engine as a whole.

4 DNS-V Overview
The in-production DNS authoritative engine we aim to ver-
ify consists of 2,000 LOC in Go. In Figure 5, yellow boxes
represent modules that implement low-level library func-
tions which tend to stay stable across different versions. As a
comparison, blue boxes represent modules that carry out the
DNS matching operations. They are subject to changes in
software iterations. Among them, Resolve is the top-level
entry point for the DNS authoritative engine.

Unlike other in-production software, the DNS authori-
tative engine has well-defined functionality: standard
authoritative resolution is processed following RFC pro-
tocols. We follow these protocols to develop the top-
level specification for this engine.

We aim to verify the DNS authoritative engine implemen-
tation against this top-level specification. This section gives
a high-level overview of how we verify this engine in a mod-
ular way. In particular, how we extend layered verification
to accommodate the lack of modularity in production code.

4.1 LLVM as Frontend
We use GoLLVM [7] to translate the Go source code into
LLVM Intermediate Representation (IR) [29] for our verifica-
tion. Note that the production binary code is not compiled by

1 type RawName struct {
2 // e.g. byte array for "www.example.com."
3 data []byte
4 // starting offset for each label.
5 // e.g., [0, 4, 12]
6 offsets []int
7 }
8
9 func compareRaw(n1 *RawName, n2 *RawName) int {
10 l1 := len(n1.offsets) - 1
11 l2 := len(n2.offsets) - 1
12 lcount := 0
13 for l1 >= 0 && l2 >= 0 {
14 p1 := n1.offsets[l1]
15 p2 := n2.offsets[l2]
16 for n1.data[p1] != '.' && n2.data[p2] != '.' {
17 if n1.data[p1] == n2.data[p2] {
18 p1++
19 p2++
20 } else {
21 break
22 }
23 }
24 if n1.data[p1] != '.' || n2.data[p2] != '.' {
25 if lcount > 0 {
26 return PARTIALMATCH
27 } else {
28 return NOMATCH
29 }
30 }
31 l1--
32 l2--
33 }
34 if l1 == l2 {
35 return EXACTMATCH
36 } else {
37 return PARTIALMATCH
38 }
39 }

Figure 4. Pseudo Go code for comparing two domain names
with the low-level raw bytes representation.

GoLLVM. The LLVM IR only serves as reference semantics
for the DNS authoritative engine. We trust the generated IR
to have the same semantics as the Go source code.

The low-level representation brings an immediate benefit—
safety checks are also automatically embedded as explicit
LLVM instructions. Unsafe behaviors (e.g., array out-of-bound
access) are encoded as panic blocks in the LLVM IR. In this
way, verifying the safety property is reduced to verifying
that these panic blocks are not reachable.

4.2 Automated Refinement with Code Summary
We follow existing work [39, 40] and base our verification
tool on full-path symbolic execution and refinement proofs.
As mentioned in §3.3, naively applying symbolic execution
on the entire software would not work. Instead, we follow the
refinement-based layered approach and divide the software
into smaller modules. For each library module that exhibits
well-defined functionality (yellow boxes in Figure 5), we
write an abstract specification and use our automated verifier
to prove that this specification indeed captures all possible
behaviors of its underlying source code.

84

SOSP ’23, October 23–26, 2023, Koblenz, Germany N. Zheng et al.

In Heap
Mem:
DNS

Records

qname + qtype rcode + AA +
relevant records

LLVM Intrinsics Go Runtime

Name §6.3RRset

Response

Domain
Tree

NodeStack

Resolve

Find

TreeSearch §6.4

Additional

WildcardGo
Source
Code

LLVM
Compiled

......

Input Output

ZoneCut
Section

Authority

GetRR

......

Figure 5. Overview of the DNS authoritative engine. Yellow
boxes are low-level library functions. Blue boxes are DNS
matching operations. Grey boxes are LLVM intrinsics and
Go runtime. The green cylinder is the in-heap domain tree.

To address scenarios when in-production modules do not
have clear functionality definitions and do not directly fit
into a layered verification framework (§3.3), we make the
following novel contribution.

Key idea: summarization. We perform full-path sym-
bolic execution on a module and accumulate all path
conditions and computation effects (e.g., writes to mem-
ory, return value). We then represent this module’s
behavior in an abstract form as the set of input-effect
pairs collected above, which we call its summary speci-
fication (see §6.4 for an example).

We automatically generate summary specification for
resolution logic that is too complicated for abstraction.
One of the most fundamental challenges in verifying in-
production software is the lack of modularity, e.g., unclean
interfaces and function division. It is often unrealistic towrite
a concise and abstract specification for certain functions or
modules. This prevents the adoption of layered verification,
which requires an abstract specification in place to hide the
implementation details of the source code.

However, we observe that such modules are often suitable
for automated specification generation through summariza-
tion. First, the arguments for these modules have clear input-
output patterns. A common pattern among these modules
is that most of their input arguments, however complex in
heap memory, are read-only by design. Other arguments
are dedicated to holding the computation results, and the
most common operations on them are setting a new value
for a particular field, or appending an item to a slice field.
This pattern allows us to associate symbolic input param-
eters with fields in the input arguments and then perform

full-path symbolic execution. For each feasible path, we com-
pare the contents of those arguments holding computation
results, identify assignments and appends caused by the exe-
cution on this path, then group all paths’ conditions and their
effects to generate the abstract specification. §5.3 lists the
common code patterns that enable straightforward encoding
of computation effects.

Second, individual branch conditions in these modules are
often simple and can be efficiently checked by SMT solvers.
Although these modules consist of a major part of the entire
codebase and contain complex computations, e.g., nested
loops containing function calls in the body, lots of branches,
etc., individual loop conditions or branch conditions are of-
ten simple comparisons between two integer variables or
pointer variables. Automatically generated summaries on
these modules are thus usable by other modules, simply be-
cause the conjunction or disjunction of many of these simple
clauses is still easily solvable by SMT solvers.

We design a flexible memory model to support the
partial abstraction of data structures. As illustrated in
Figure 2, existing verification techniques often make a clear
distinction between the abstract state (operated by abstract
specifications) and the concrete memory state (operated by
concrete instructions). This makes it hard to reason about
in-production software, which may exhibit imperfect data
encapsulation (i.e., both abstract specifications and concrete
code access the same field), as illustrated in Figure 3.
We address this issue by designing a flexible memory

model such that abstract specifications become oblivious of
whether memory states are concrete or not. In particular, we
model the memory as a set of non-overlapping blocks, ref-
erenced by LLVM pointers. Each block contains an abstract
array or struct, whose contents can be either concrete val-
ues or abstract values. In this way, we can partially abstract
certain fields within a data structure. While abstracted fields
may only be accessed by specifications, the remaining ones
can be operated by both specifications and ordinary LLVM
instructions. §5.1 gives more details about this design.

4.3 Overview of the DNS-V Workflow
Figure 6 gives an overview of the DNS-V workflow. The
overall verification follows the layered approach. As a lower
layer guarantees that its abstract specification faithfully cap-
tures all behaviors of the corresponding Go source code, the
higher layer relies on this specification to reason about its
own behavior, such that each layer’s source code is veri-
fied independently. We verify each layer from the bottom to
the top (Figure 5). The top-most layer, Resolve, is verified
against the top-level specification we develop.

For each layer, we verify it by one of the two approaches.

• Refinement-based verification against amanually-provided
functional specification. On the right side of Figure 6, red

85

Verifying In-Production DNS SOSP ’23, October 23–26, 2023, Koblenz, Germany

VerificationGo
Code

Summary Spec

Verified Spec

Config

Spec
(optional)

VerificationGo
Code

Summary Spec

Verified Spec

Config

Spec
(optional)

Dependency Spec

Dependency Spec

Layer 2

Module 1

OR

ORLayer 1

Overall verification workflow

Go Code

LLVM IR

Symbolic
Execution

on
LLVM IR

Path
Conditions
and Effects

Map to
Abstract
Domain

Abstract
Conditions
and Effects

Automated Spec
Summarization

Symbolic
Execution on

Functional Spec

Summary
Spec

Verified or
Counter
Example

Dependency
Spec

Interface
Config

Functional
Spec

Automated Spec
Summarization

Refinement Based
Verification

1

2
§5.1

§5.3

§5.3

§5.4

OR

Verification

Verification workflow of a single layer

Figure 6. Our verification workflow. On the left, the overall verification follows the layered approach, where a lower layer
exposes its specification, instead of source code, to the higher layer. On the right, an individual layer is either verified by
refinement proofs or is automatically summarized into an abstract specification.

blocks represent inputs for the verification, including the
Go source code, its functional specification, specifications
for dependency layers, and an interface config associating
concrete variables with abstract ones (refinement relation).
We then use GoLLVM [7] to translate the Go source code
into LLVM IR. It is then fed into the verifier to perform
full-path symbolic execution. The result is a set of path
conditions and computation effects. The verifier thenmaps
them to the abstract domain and checks whether all paths
are consistent with the specification. Finally, the verifier
either decides that the source code and its specification
are consistent, or outputs counter-examples.

• Automated specification summarization. Alternatively, we
may choose not to supply a functional specification to this
verifier. Instead, the verifier aggregates all path conditions
and computation effects, then generates an abstract sum-
mary specification for this layer.
Choosing which approach to take depends on the particu-

lar layer’s functionality and implementation. Manual spec-
ifications are concise and highly abstracted. Summarized
specifications use simple formulas and relatively large-size
encodings. As a result, summarized specifications may con-
tain more explicit branches but simpler branch conditions.
This could reduce the overall symbolic execution overhead
in certain circumstances. For instance, DNS matching opera-
tions exhibit complex functionalities due to lots of flags and
input arguments. We apply summarization to such layers to
avoid having to manually develop complete specifications.
On the other hand, domain name comparison (Figure 4) is
suitable for manual specification because its logic and func-
tionality are clear. We rely on human insights to abstract the
sequence of letter-level comparisons into concise word-level
comparisons.

5 DNS-V Design and Implementation
This section explains the design and implementation of DNS-
V we develop for verifying the in-production DNS author-
itative engine. As shown on the right side of Figure 6, we

T ::= Void
| Bool
| BitVector w w-bit Integer
| Array[n * T] n-element Array
| Struct (field_id→ T) Struct
| Pointer T
| List[T] Abstract List

Figure 7. Types of AbsLLVM values.

explain how we encode the semantics of LLVM IR and ab-
stract specifications (§5.1), how we handle opaque pointers
and bitcasts in the IR (§5.5), and how the two verification
approaches work—refinement-based verification (§5.2) and
summarization (§5.3).

5.1 AbsLLVM Language and Memory Model
The verifier has two frontends, one for GoLLVM instruc-
tions and another for abstract specifications. Both are trans-
lated into the unified AbsLLVM language, which extends
the LLVM language with an abstract domain. This allows
us to mix a piece of GoLLVM source code with abstract
specifications of its dependency functions.
Types and expressions. Figure 7 shows types used in the
AbsLLVM language. While most types have their counter-
parts in the LLVM language, List[T] denotes an abstract list
that does not correspond to a concrete LLVM type. Our veri-
fier supports circular types, such as a TreeNode that contains
pointers to children TreeNodes, which are common patterns
in the DNS authoritative engine.
Figure 8 shows expressions in the AbsLLVM language.

Most constructs have their roots in the LLVM language. How-
ever, havoc means any value is possible. Struct field access
and Array/List element access are mostly used by abstract
specifications, since high-level structs and arrays in the Go
source code are usually compiled to pointer and primitive
data operations on the LLVM level.
Flexiblememorymodel.Our memory model follows Com-
pCert [30], wherememory consists of non-overlapping blocks,
referenced to by block_ids. However, we differ from a usual
C memory model in two ways. First, a memory block can

86

SOSP ’23, October 23–26, 2023, Koblenz, Germany N. Zheng et al.

aop ::= ’+’ | ’-’ | ’&’ | ’|’ | ’̂’ | ’«’ | ’»’
bop ::= ’&&’ | ’||’ | ’~’
cop ::= ’==’ | ’!=’ | ’>’ | ’<’ | ’<=’ | ’>=’
val ::= int

| ’true’ | ’false’
| sym_id Symbolic Constant
| T ’{’ exp* ’}’ Struct of Type T
| T ’[’ exp* ’]’ List/Array of Type T
| ’havoc’ Any Value
| block_id | ’null’ Raw Pointers

exp ::= var_id Variable
| val
| ’getelementptr’ exp (exp)+ Pointer with Indices
| exp aop exp Arithmetic Operations
| exp cop exp Comparison
| exp bop exp Boolean Composition
| exp ’[’ exp ’]’ Array/List Access
| (’load’ | ’store’) exp Load/Store
| ’alloca’ T Alloca Mem for Type T
| func_id ’(’ exp* ’)’ Function Call
| ...

Figure 8. Syntax of AbsLLVM expressions.

hold any val, whether it is concrete or abstract. Second, in-
stead of relying on concrete offsets, we follow the LLVM
convention and use a list of indices to specify fields within a
memory block. In this way, we support the partial abstrac-
tion of data structures—abstracting one field in a struct does
not interfere with other fields.

We define the memory state as a mapping from block_id
to val. We then implement memory operations (e.g., load,
store, and alloca) by properly setting and restoring the cor-
responding val. Unlike existing work that models array ac-
cesses using the uninterpreted functions theory, we choose
this modeling to accommodate the intensive use of complex
data structures, i.e., nested structs and arrays. This design
is also based on the observation that memory writes in the
DNS authoritative engine mostly happen to concrete fields
within structs. For a few library functions that indeed write
to variable indexes in an array, we carefully isolate them
from other modules and use concretization techniques to
facilitate their verification.
Another issue is how to distinguish stack memory be-

tween heap memory. This is straightforward in LLVM, for
the alloca instruction only creates stack memory, which is
freed upon function exit. Heap memory is concrete and is
derived from domain tree configurations. Notice that we do
not reason about stack or heap resource usage. Instead, we
keep the memory model oblivious of concrete data layouts
in order to allow partial abstraction of data structures.

5.2 Symbolic Execution on AbsLLVM
Given a module’s source code and an abstract specification,
we follow prior work [39, 40] to verify their equivalence
through refinement proofs (Figure 1). The overall workflow
is explained in §4.3. At the heart of it is the symbolic exe-
cution on AbsLLVM. We implement the verifier’s symbolic

execution engine with about 10,000 LOC of Java. Upon each
branch instruction, we translate its condition into SMT ex-
pressions and invoke Z3 [17] to check its satisfiability. These
conditions may include simple arithmetic comparisons, as
well as more sophisticated built-in predicates (e.g., listEq)
that we use in developing specifications. We explain more
about built-in predicates in §6.1.

5.3 Automated Summarization of Specifications
As mentioned in §4.2, summarization is a key technique
that we employ to address the challenges with verifying in-
production software—the lack of modularity, as can be seen
with unclean interfaces and poor data structure encapsula-
tion. Summarization achieves modular verification without
having to rely on manually-developed specifications. To put
it simple, summarization computes the set of input-effect
pairs of a module. Inputs for invoking a module include im-
mediate symbolic values for parameters, and symbolic values
that are pointed to by parameter pointers. We rely on a con-
sistent naming convention to associate symbolic values with
parameters.

Representing computation effects. Representing com-
putation effects can be rather complicated in general, e.g.,
sequences of stores to variable indexes. We observe that the
in-production DNS authoritative engine’s resolution logic
modules, which we try to automatically summarize, are
computation-heavy and are relatively straightforward in
updating the heap memory. In particular, we need to support
the following code patterns.
• Allocating a new struct and populating each field. For
example, this is useful for wildcard matches, where the
DNS authoritative engine makes a copy of the wildcard
RR and replaces its rname with the actual query name,
then stores this altered RR in the DNS response.

• Appending to an array. Although representing generic
array stores is hard, the in-production DNS authoritative
engine exhibits a simpler pattern: store to a particular
index then increment that index by 1. For example, this is
used in the custom-defined stack structure, which tracks
how a query goes down the domain tree.

• Updating specific fields in a struct. This is the most com-
mon way for modules to pass around complex values.
Representing updates to struct fields is straightforward,

where we only need to follow the naming convention to asso-
ciate abstract variables with parameters. We define built-in
constructs, newobject and append, to represent the alloca-
tion and appending operations in the summary specification.

Summary specification. During the symbolic execution
of the LLVM IR, we collect the input-effect pair of each exe-
cution path. For the k-th path, we collect its path condition
𝜃𝑘 and effects 𝑓𝑘 , then express them in an abstract form, i.e.,

87

Verifying In-Production DNS SOSP ’23, October 23–26, 2023, Koblenz, Germany

𝜃 ′
𝑘
and 𝑓 ′

𝑘
. We aggregate all these pairs to form the final

summary specification as below.

𝑠𝑢𝑚𝑚𝑎𝑟𝑦_𝑠𝑝𝑒𝑐 (𝑠′0) =

𝑓 ′0 (𝑠′0) 𝜃 ′0 (𝑠′0)
......

𝑓 ′𝑛−1 (𝑠′0) 𝜃 ′𝑛−1 (𝑠′0)

5.4 Encoding Methodology
We carefully design the encoding of data structures to fa-
cilitate the automated reasoning of our DNS authoritative
engine. For example, the variable-length list (e.g., for rep-
resenting queried domain names) is encoded as a series of
individual variables for each active list element and a sym-
bolic length variable. The verifier keeps a mapping between
elements in the list and symbolic variables defined in the
SMT solver context. This encoding is feasible because our
codebase never accesses a list element with a random sym-
bolic index. We use the above primitive encoding instead of
the built-in sequence type provided by SMT solvers because
it provides sufficient expressiveness for our codebase and
enjoys efficient automated reasoning.

5.5 Resolving Opaque Pointers and Bitcasts
The above verifier design relies on LLVM pointers to be
typed, that is, they are constructed from a pointer memory
block type with a list of indices to reference fields within
the block. However, as the in-production DNS authoritative
engine uses complex data structures, the verifier-friendly
typed pointers are not always available. In many places,
pointers are cast back and forth between the typed ones and
opaque ones, where concrete byte offsets are used instead
of a list of indices. In fact, LLVM is intentionally evolving
toward opaque pointers to facilitate optimizations, so there
is no easy way around this challenge when verifying in-
production software that uses complex data structures.
We extend LLVM to resolve such opaque pointers and

bitcasts. In particular, we track each chain of pointers from
the first time it is introduced and utilize the data layout to
translate the load/store of opaque pointers to typed ones.

6 Verification of an In-Production DNS
Authoritative Engine

This section explains howwe use the verifier in §5 to formally
verify the in-production DNS authoritative engine, which
consists of about 2,000 LOC in Go. Developers choose the Go
language to enjoy its memory safety features, concurrency
support, and easy compilation and deployment.

Notice that the DNS authoritative engine we verify corre-
sponds to the data plane of the DNS authoritative resolution.
We rely on the control plane, which is outside this engine, to
supply concrete in-heap domain trees as the runtime envi-
ronment. §9 contains more discussions on how we generate
these domain trees.

1 DNSResponse rrlookup(zone: Zone, query: Query){
2 let relevant_mask := get_relevant_mask(query,

zone.zone_name, zone.rrs) in //filter
irrelevant

3 if (relevant_mask == 0){
4 let soa_records_mask := filter_mask_rtype_SOA(

zone.rrs) in
5 return DNSResponse(RCode.NXDOMAIN,

soa_records_mask) //not found
6 }else{
7 let equal_mask := filter_mask_name_eq(zone.

rrs, query.qname) in
8 if (relevant_mask & equal_mask) != 0{
9 exact_match(relevant_mask, query, zone.

rrs, false) //exact match
10 }
11 else{
12 // wildcard match
13 // ...
14 }
15 }
16 }

Figure 9. Code snippets of the top-layer specification.

6.1 Specifications
We design specifications in an executable style (see the Ab-
sLLVM language in §5.1), such that developers without veri-
fication background can also understand them. This is im-
portant in practice because specifications for dependency
libraries and the top-level specification are manually devel-
oped, which requires the collaboration between developers
from both the verification background and the DNS back-
ground. We also define easy-to-use built-in predicates to
facilitate the development of specifications. In particular, the
top-level specification makes extensive use of list operators,
such as conditioned filtering, equality checking, computing
the max element, etc.We leverage the fact that the in-heap
domain tree is concrete to specifically simplify the encoding
of the above predicates to make their automated reasoning
efficient.
Top-level specification and guarantees. The top-level
specification describes the whole-program behavior of the
DNS authoritative engine. Adhering to RFC standards [19,
31, 36, 37, 55] and custom features, we manually develop
the top-level specification (about 200 LOC) to describe the
overall authoritative resolution process. Our verification en-
sures the following two properties for our DNS authoritative
engine.
• Functional correctness: given any possible inputs, the ver-

ified code always returns the same response as computed
by the top-level specification.

• Safety: the verified code does not incur any runtime error.
This is entailed by the functional correctness property,
since a low-level runtime error (e.g., nil pointers, index
out of bounds, etc.) would prevent the code from returning
expected responses. We verify the absence of such errors
by proving for each module that GoLLVM-emitted panics
in the IR are never reachable.

88

SOSP ’23, October 23–26, 2023, Koblenz, Germany N. Zheng et al.

We follow SCALE [25] and formalize the behavior of the
DNS authoritative engine as a function rrlookup. It takes
a zone configuration, 𝑍𝑜𝑛𝑒 , and a DNS request, 𝑞𝑢𝑒𝑟𝑦, as
input, and returns a DNS response, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 . 𝑍𝑜𝑛𝑒 is a list
of resource records. A resource record is a set of resource
name, resource type and resource data. A DNS query 𝑞𝑢𝑒𝑟𝑦
is a pair of query type and query name. A DNS response
𝑟𝑒𝑠𝑝 is a set of response status, response flag and response
data.
Figure 9 shows the skeleton code of the top-level specifi-

cation. Unlike the production code that traverses a domain
tree, the specification groups all zone resource records in a
list and carries out the resolution logic by iterative filtering
on this list.

6.2 Defining Layers
We first follow the layered approach to divide the DNS au-
thoritative engine into layers, such that each layer can be
verified independently. Unlike prior work [20, 39], we also
decide for each layer whether its specification should be
manually developed or automatically summarized.

Layers whose specifications are manually developed.
These include layers that stay stable across different ver-
sions of the DNS authoritative engine, and also layers that
require significant data abstraction. We manually develop
specifications for the yellow layers in Figure 5.
• Name: It defines the encoding of domain names and imple-
ments operations such as comparison and subtraction.

• DomainTree: A prefix-tree-like structure that organizes
all resource records.

• Response, Section: They define the encoding of DNS
responses and three response sections.

• RRset, NodeStack: They define resource record sets and
traversed nodes for TreeSearch.

Layers whose specifications are automatically sum-
marized. These include layers that are computation heavy
and do not involve sophisticated data abstraction. They are
evolving across versions as the DNS authoritative engine
incorporates new features.
• TreeSearch: It walks down the domain tree to match an
incoming qname.

• Find, Additional, Wildcard, etc.: They implement reso-
lution logic such as regular matches, glue record lookups,
wildcard matches, etc.

6.3 Abstraction of Lower-Layer Libraries
As explained in §3.3, one of the major challenges of verifying
in-production software is that its source code is often overly
complex in order to achieve better performance. For exam-
ple, Figure 4 illustrates how the Name module represents
domain names and implements the comparison between

1 // e.g., [int("com"), int("example"), int("www")]
2 type Name List[Int]
3
4 int compareAbs(Name n1, Name n2){
5 if (n1[0] != n2[0]){
6 return NOMATCH
7 }else{
8 if (listEq(n1, n2)){
9 return EXACTMATCH
10 }else{
11 return PARTIALMATCH
12 }
13 }
14 }

Figure 10. Abstract specification for compareRaw.

them. This byte-by-byte comparison exposes overly complex
low-level details, making it unrealistic to naively apply auto-
mated verification techniques (i.e., symbolic execution) on
the whole-program scale.

We adopt refinement-based approaches and try to lift the
Name module into a more abstract form. In particular, as
one of the most basic and frequently invoked modules, we
try to design its specification to be amenable to automated
verification, that is, it should consist of primitive types and
basic arithmetic operations only. To simplify the specification
further, we observe that whenever compareRaw is called, the
argument n2must be concrete, i.e., it is a concrete name from
the domain tree node.
Without loss of generality, assume that n2 represents

“www.example.com” and n1 is a symbolic qname that can
take any valid value. On an abstract level, the comparison
carries out by computing the lexicographical order label-by-
label, which are bound to contain no more than 64 characters.
This allows us to map labels to integers, drastically simplify-
ing the compareRaw operation.

Figure 10 shows the abstract specification for compareRaw.
Here, compareAbs represents a domain name as a list of in-
tegers, corresponding to the list of labels, but in the reversed
order. Assume that n2 is represented as [100, 200, 300], cor-
responding to “com”, “example”, and “www”, respectively.
Also assume n1 is represented as [𝑛10, 𝑛11, ...], while the
total length is another symbolic variable, 𝑛𝑎𝑚𝑒𝐿𝑒𝑛1. In this
case, calling compareAbs (n1, n2) will reduce the first branch
condition to 𝑛10! = 100, and the second branch condition to
𝑛10 == 100 ∧ 𝑛11 == 200 ∧ 𝑛12 == 300 ∧ 𝑛𝑎𝑚𝑒𝐿𝑒𝑛1 == 3.
In this way, we reduce the name comparison into simple
comparisons between integer values, making it amenable to
automated verification.

We follow §5.2 to prove that compareAbs indeed captures
all behaviors of compareRaw. In particular, we rely on the
fact that the total length of qname is also bounded to restrict
the set of execution paths to be finite.

Other library modules are relatively straightforward and
we omit details about their verification.

89

Verifying In-Production DNS SOSP ’23, October 23–26, 2023, Koblenz, Germany

Path ID Example qname satisfying the path condition
P0 example.com
P1 cs.example.com
P2 c.example.com
P3 www.example.com
P4 w.example.com
P5 wwww.example.com
P6 a.www.example.com
P7 web.cs.example.com
P8 w.cs.example.com
P9 zoo.cs.example.com
P10 a.web.cs.example.com
P11 z.cs.example.com
P12 zooo.cs.example.com
P13 a.zoo.cs.example.com

Table 1. All possible execution paths walking down the
domain tree.

6.4 Summarization of Resolution Logic
Layers implementing resolution logic evolve constantly as
the DNS authoritative engine incorporates more features.
We automatically generate specifications for them.

For example, TreeSearch takes as input a qname, then
walks down the domain tree to find the deepest relevant
matching node for this query name. Meanwhile, the entire
path from the root to the final node is stored in a custom stack
object. Further, input flags control corner case behaviors, e.g.,
whether this walk terminates immediately if it encounters
an NS-type node (whether further resolutions should be del-
egated to other servers or not). Manually writing an abstract
specification for the above operations is non-trivial.
Figure 11 illustrates an example domain tree. In addition

to the usual left and right nodes, a node also has a down node,
denoting the beginning of its subdomains. Given a qname,
TreeSearch invokes compareRaw (which we have abstracted
to compareAbs) to compare it with the root node.
• PARTIALMATCH: in this case, qname must be a subdo-
main and TreeSearch walks to the down node.

• EXACTMATCH: in this case, TreeSearch has found the
exact node.

• NOMATCH: in this case, TreeSearch looks for the left or
right node, depending on the actual ordering.
We perform full-path symbolic execution on TreeSearch

with this example domain tree to collect all input-effect pairs.
In particular, an execution path may terminate at finding
an actual tree node, or at finding a nil node. Table 1 shows
example qname that leads to different matching paths on
this domain tree. For example, path 𝑃2 corresponds to the
following abstract input-effect pair.

1 if (nameLen >= 3 && n0 == int("com") && n1 ==
int("example") && n2 < int("cs")){

2 match_result := SUBDOMAIN;
3 match_node := NODE("example.com");
4 }

 example.com

 cs

 www

 web

 zoo

P0

P7

P1

P2 P3

P4
P6

P5

P8
P10 P9

P11
P13

P12

Figure 11. An example domain tree. P*s (in blue) indicate
execution paths walking down the domain tree. White boxes
denote actual (non-nil) tree nodes.

Such an abstract summarization captures all possible be-
haviors of executing TreeSearch. Its branch conditions con-
sist of only simple integer arithmetic and comparisons, mak-
ing the reasoning of higher layers easy.

6.5 Concrete Domain Tree
The codebase we verify corresponds to the data plane of the
DNS authoritative resolution. Its control plane, which reads
a zone file and constructs a domain tree in heap memory, is
outside the scope of this work. We rely on the control plane
implementation to supply concrete in-heap domain trees as
the runtime environment. In particular, we develop scripts to
randomly generate thousands of zone configurations, such
that each run of the overall verification proves the correct-
ness and safety of the DNS authoritative engine deployed
on a concrete zone configuration snapshot.
This is a desirable feature of data plane verification. The

concretization of the in-heap domain tree makes full-path
symbolic execution feasible. On the one hand, it effectively
removes unbounded loops in the recursive lookup code, mak-
ing the program’s behavior finite. On the other hand, it
avoids the reasoning of symbolic tree data structures, greatly
simplifying the verification.

7 Evaluation
This section illustrates the bug-finding ability and porting
cost of applying DNS-V. As one of the largest cloud providers,
Alibaba Cloud operates a global DNS service. To further im-
prove the reliability of our service, we adopt a dual stack
apporach to actively develop an alternative DNS software
stack and gradually deploy in parallel with our time-tested
solutions. We perform verification on this alternative imple-
mentation to ensure its correctness. In particular, DNS-V has
been used during the development of our production DNS
authoritative engine for two months. We evaluate DNS-V on
verifying four different versions of our codebase.
Bug finding ability. By performing rigorous verification on
our DNS authoritative engine, DNS-V found and prevented

90

SOSP ’23, October 23–26, 2023, Koblenz, Germany N. Zheng et al.

Index Codebase Version Classification Description
1 1.0 Wrong Flag AA flag missing for certain authoritative answers
2 1.0 Wrong Authority Extraneous NS/SOA authority
3 1.0 Wrong Answer Incorrect resource record matching on MX
4 2.0 Wrong Additional Incomplete glue for certain queries
5 2.0 Wrong Additional Incomplete glue when handling wildcard
6 2.0 Wrong Answer/rcode Incorrect domain tree search for certain wildcard domains
7 2.0 Wrong Additional Extraneous records in the additional section
8 3.0/dev Wrong Answer/rcode Incorrect judgments on certain wildcard domains
9 dev Runtime Error Incomplete bug fix may cause invalid memory access

Table 2. Issues prevented from reaching production by applying formal verification. V1.0 is a base version. V2.0 and v3.0 are
iterations containing new features and performance improvements. Dev is the immediate iteration after v3.0.

𝑂 (10) extra bugs from reaching production, including both
runtime errors and functional correctness violations (e.g.,
wrong header flags, wrong rcodes, and wrong answers).
These bugs were not caught by existing test suites used by
our DNS developers. Table 2 shows a subset of bugs found.
We first showcase the following three versions of the

codebase—v1.0 (base), v2.0, and v3.0, which represent itera-
tions that contain new features and performance improve-
ments. We observe that every version contains bugs that
the existing test suite does not find. On average, less than
one percent of execution paths behave incorrectly, such that
only specifically-tailored test cases can trigger these bugs.
We also observe that not all functional correctness violations
are bugs. We iterate our top-level specification when the
behavior deviation is intentionally designed for satisfying
custom requirements. Moreover, we observe that changes to
the source code are prone to producing new elusive bugs (e.g.,
Issue #6, Issue #7, Issue #8). This demonstrates the difficulty
for humans to consider all corner cases comprehensively.
Second, we showcase the dev version, which contains

bug-fix patches for v3.0. These patches have passed all test
suites before going through DNS-V’s rigorous verification.
However, we found that (1) some bugs were not completely
fixed in one go (e.g., Issue #8), and (2) some new bugs were
introduced in the bug-fixing process (e.g., Issue #9). Our
verification framework is able to continuously check each
version of the DNS authoritative engine, comprehensively
explore all its behaviors, and indeed uncovers deep and subtle
bugs that have evaded existing test suites.

Porting efforts. Porting the verification across different
versions of the DNS authoritative engine implementation
takes little manual effort even for developers with limited
knowledge of formal methods. Developers need to provide
specifications of dependencies, interface configurations, and
the top-level specification. Specifications of dependencies
are carefully designed, but they remain stable across different
versions. Interface configurations depend on the concrete

v2.0 changes
v2.0→ v3.0

lines of code:
implementation O(2000) O(200)
dependency specification O(100) O(10)
interface configuration O(50) O(20)
top-level specification O(200) O(10)
safety property O(1) 0

Table 3. Cost of verifying one version of the DNS authorita-
tive engine and porting to a newer version.

20 40 60 80 100
Zone file size

0

25

50

75

100

Ti
m

e
(s

)

10
21

36

53

87

Search Wildcard Find Resolve

Figure 12. Verification time of major layers, when given
different zone configuration sizes (number of entries).

code of the software. They are updated when the correspond-
ing code modules’ input-effect interfaces are modified.

The top-level specification is developed based on RFCs [19,
31, 36, 37, 55] and documents of custom features. RFC behav-
iors remain stable across different DNS software versions.
Specifications of custom features are relatively short and sim-
ple. Table 3 shows porting efforts for the DNS authoritative
engine’s verification. Porting and verifying each version of
software took roughly one person-week each. For each layer,
DNS-V takes less than one minute to finish the symbolic ex-
ecution and automatic summarization (shown in Figure 12).

91

Verifying In-Production DNS SOSP ’23, October 23–26, 2023, Koblenz, Germany

Figure 12 shows the verification time for major layers. As the
given zone configuration grows in size (number of entries),
the verification time increases at a reasonable pace, demon-
strating the effectiveness of our verification approach.

8 Deployment Experience
This section shares our experience in verifying our DNS
authoritative engine. We verified four different versions of
DNS authoritative engine, of which v1.0 is a base version,
and v2.0 and v3.0 contain new features and performance
improvements on top of prior versions. The dev version
contains immediate bug-fix patches for v3.0. We explain in
detail two representative issues uncovered by DNS-V.

Issue #4 in Table 2: incomplete glue records.When the
computed DNS response contains NS records (i.e., delegation
of subdomains to another name server), Resolve invokes
the name resolution process again to search for IP addresses
of this name server. However, in some cases, the incomplete
setting of internal control flags changes how a domain tree
is traversed and may cause this search to return an empty
list of addresses. Thus, no glue record is found, despite that
there are resource records containing IP addresses for this
name server.
This incomplete computation of glue records is inconsis-

tent with the DNS protocol [36] and is indeed a functional
correctness violation. It will cause the user to send additional
queries for the address of this name server.

Issue #9 in Table 2: a bug fix introduces potential in-
valid memory access As our verification tool uncovered
bugs in the DNS authoritative engine, developers examined
these bugs, incorporated patches to fix them, and then went
through the same testing and verification processes again. In
one iteration, our developers failed to consider comprehen-
sively how the proposed patch would interact with the vast
amount of existing code. As a result, our verification tool
found that the patch may potentially trigger invalid mem-
ory access and cause runtime error. It demonstrated how
in-production software can be bug-prone: any code change
without thorough consideration could introduce new bugs.

None of the above bugs was caught by existing test suites
used by our developers because only carefully crafted DNS
queries could trigger such bugs. It is beyondmanual efforts to
design a set of comprehensive test queries. As a comparison,
our verification framework proves to be effective at exploring
all possible behaviors of the DNS authoritative engine and
uncovering deep and subtle bugs in it.

9 Discussion

Generality. The approach of DNS-V is not tied to the spe-
cific codebase we have verified. It generalizes to other in-
production software systems with the poor-interface chal-
lenge. Specifically, it is effective for stateless modules, i.e.,

modules that incur no persistent modifications to heap mem-
ory, so that symbolic execution can always start from a clean
and concrete initial heap state. This makes it feasible to
achieve full-path symbolic execution, and to represent a
module’s behavior in input-effect pairs, which are essential
for summarization. For example, the DNS engine we verify
is stateless and does not modify the in-heap domain tree
containing DNS resource records across different runs. The
stateless property also holds in general for systems that have
fixed control plane configurations, including other DNS data
plane implementations (e.g., Bind, NSD, CoreDNS), database
query engines, software-defined networking systems, etc.
Trusted computing base. This work verifies our DNS au-
thoritative engine on the source code level. It assumes the
correctness of the underlying toolchain—GoLLVM, the Z3
SMT solver, and our verification framework (e.g., the correct-
ness of our LLVM semantics modeling, our summarization
implementation, etc.). In particular, we trust GoLLVM to gen-
erate IR that includes comprehensive safety checks, and we
assume that the generated IR exhibits the same behavior as
its binary built by Go compiler. Besides, we trust manual
specifications of low-level Go library functions (e.g., Memcpy,
NewObject) and the top-level specification. DNS-V focuses
on functional correctness and cannot rule out bugs related to
resource usage, e.g., stack overflow or out of memory errors.
Assumptions on code patterns. DNS-V leverages the fact
that the overall behavior of the DNS authoritative engine is
stateless, i.e., the in-heap domain tree remains unchanged
across different runs. The stateless property eliminates the
need for inductive reasoning and for crafting suitable invari-
ants, greatly simplifying the automated verification. This
work also assumes effect patterns are limited (e.g., return
value, writes to memory, create and modify memory). It en-
ables automated summarization to infer all effects of each
layer. Similar to existing automated verifiers, to achieve full-
path symbolic execution, this work relies on the assumption
that the code does not incur unbounded loops and recursions
(given any concrete in-heap domain tree).
Reliance on concrete in-heap domain trees. The DNS
authoritative engine implements the matching logic given
a domain tree that holds DNS resource records. This corre-
sponds to the data plane of the DNS authoritative resolution.
Its control plane, i.e., the maintenance of the domain tree, is
outside the scope of the DNS authoritative engine. We focus
our verification effort on the data plane modules and rely on
the control plane to supply concrete in-heap domain trees as
the runtime environment. We develop scripts to randomly
generate tens of thousands of zone configurations. For each
zone, we favor the generation of complex domain names (e.g.,
containing ’*’ at various positions) and the intertwining of
resource records (e.g., having sub-domains, referring to each
other via NS records, etc.), such that the domain tree covers
diverse matching scenarios.

92

SOSP ’23, October 23–26, 2023, Koblenz, Germany N. Zheng et al.

Properties verified. We verify the safety (runtime errors
captured by GoLLVM) and functional correctness (with re-
spect to the top-level specification) of the DNS authoritative
engine. We do not verify concurrency behaviors (e.g., run-
time updates to the in-heap domain tree). Furthermore, we
restrict our verification to one-shot DNS queries. We do
not reason about properties involving a sequence of queries
(e.g., load balancing, memory leak). We do not reason about
DNSSEC related behaviors.

10 Related Work

Correctness of DNS. GRoot zone-file verifier [24] presents
the first formalized DNS authoritative resolution semantics.
It does not verify DNS software. SCALE [25] performs sym-
bolic execution on the above semantics to systematically
generate test cases for DNS authoritative servers. It success-
fully uncovers bugs related to the general behaviors of DNS
resolution. However, it does not analyze the implementation
source code and cannot find implementation-specific bugs.
Ironsides [11] is a DNS authoritative nameserver proved to
be absent of dataflow errors such as buffer overflows. How-
ever, it does not provide functional correctness guarantees.
DNS fuzzers [43, 50] cannot guarantee the absence of bugs.

Interactive verification of software. There is a rich liter-
ature on the formal verification of complex software with
the aid of interactive theorem provers [6, 12, 33, 42, 45].
Successes in verifying operating system kernels [20] and
various extensions [14, 16, 21–23, 34, 35], compilers [30],
file systems [13, 15, 58], etc., demonstrate the expressive-
ness of this approach. Among them, seL4 [27, 28, 48] is the
first formally verified operating system kernel. It also enjoys
non-interference proof [38] and high-assurance WCET anal-
ysis [47]. However, interactive verification often requires
years of manual efforts that are prohibitive for verifying
in-production software.

Automated verification of software. Automated verifi-
cation often relies on SMT solvers and symbolic execution
to prove the equivalence between specifications and imple-
mentations. As a consequence, they often need to carefully
design (or retrofit) the implementation source code to be
amenable to SMT solvers and they restrict the properties to
verify. Hyperkernel [40] builds an OS kernel and verifies its
functional correctness. It designs a finite interface (e.g., all
loop bounds are made constant) to make SMT solving feasi-
ble. Jitterbug [41], ucheck [46], etc. [9, 49] demonstrate that
this approach also applies to verifying compilation, microser-
vices, and other systems, after employing manual proof ef-
forts to break down the top-level theorem into smaller and
local properties. Serval [39] builds reusable automated veri-
fiers by encoding instruction set semantics in Rosette [53, 54].
It also utilizes symbolic profiling [10] to help developers iden-
tify bottlenecks in automated reasoning. Serval successfully

retrofits two prior security monitors to automated verifi-
cation. None of the above techniques addresses the poor-
interface challenge of verifying in-production software.

11 Conclusion
We present a verification framework for our in-production
DNS authoritative engine. DNS-V is the first tool that not
only automatically verifies an in-production DNS authori-
tative engine but also makes the verification easy to port to
newly iterated versions of our DNS authoritative engine. Our
framework has been successful in identifying tens of critical
bugs in different versions of our DNS authoritative engine,
preventing them from reaching production. The porting cost
is below one person-week.

Acknowledgments.We thank our shepherd, Aurojit Panda,
and the anonymous reviewers for their valuable feedback.
This work was supported in part by the National Key Re-
search and Development Program of China under the grant
number 2022YFB4500700, the National Natural Science Foun-
dation of China under the grant numbers 62325201 and
62172008, the National Natural Science Fund for the Excel-
lent Young Scientists Fund Program (Overseas), the Beijing
Outstanding Young Scientist Program under the grant num-
ber BJJWZYJH01201910001004, and Alibaba Group through
Alibaba Research Intern Program. Xin Jin is the correspond-
ing author. Naiqian Zheng, Yuxing Xiang, Xuanzhe Liu, and
Xin Jin are affiliated with School of Computer Science at
Peking University, Center for Data Space Technology and
System at Peking University, and Key Laboratory of High
Confidence Software Technologies (Peking University), Min-
istry of Education.

References
[1] 2017. How and why the leap second affected Cloudflare

DNS. https://blog.cloudflare.com/how-and-why-the-leap-second-
affected-cloudflare-dns/.

[2] 2018. Analyzing the Impact of a Public DNS Resolver Outage. https:
//www.catchpoint.com/blog/google-dns-outage.

[3] 2021. A DNS outage just took down a large chunk of the in-
ternet. https://techcrunch.com/2021/07/22/a-dns-outage-just-took-
down-a-good-chunk-of-the-internet/.

[4] 2021. Observations on resolver behavior during DNS outages. https:
//blog.verisign.com/security/facebook-dns-outage/.

[5] 2021. Understanding how Facebook disappeared from the Internet.
https://blog.cloudflare.com/october-2021-facebook-outage/.

[6] 2022. The Coq Proof Assistant. https://coq.inria.fr/.
[7] 2022. Gollvm: LLVM-based Go compiler. https://go.googlesource.com/

gollvm.
[8] Anish Athalye, M Frans Kaashoek, and Nickolai Zeldovich. 2022. Ver-

ifying Hardware Security Modules with {Information-Preserving}
Refinement. In USENIX OSDI.

[9] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully,
Bernhard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton,
Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield. 2021. Using
lightweight formal methods to validate a key-value storage node in
Amazon S3. In ACM SOSP.

93

https://blog.cloudflare.com/how-and-why-the-leap-second-affected-cloudflare-dns/
https://blog.cloudflare.com/how-and-why-the-leap-second-affected-cloudflare-dns/
https://www.catchpoint.com/blog/google-dns-outage
https://www.catchpoint.com/blog/google-dns-outage
https://techcrunch.com/2021/07/22/a-dns-outage-just-took-down-a-good-chunk-of-the-internet/
https://techcrunch.com/2021/07/22/a-dns-outage-just-took-down-a-good-chunk-of-the-internet/
https://blog.verisign.com/security/facebook-dns-outage/
https://blog.verisign.com/security/facebook-dns-outage/
https://blog.cloudflare.com/october-2021-facebook-outage/
https://coq.inria.fr/
https://go.googlesource.com/gollvm
https://go.googlesource.com/gollvm

Verifying In-Production DNS SOSP ’23, October 23–26, 2023, Koblenz, Germany

[10] James Bornholt and Emina Torlak. 2018. Finding code that explodes
under symbolic evaluation. Proceedings of the ACM on Programming
Languages OOPSLA (2018).

[11] Martin Carlisle and Barry Fagin. 2012. IRONSIDES: DNSwith no single-
packet denial of service or remote code execution vulnerabilities. In
IEEE GLOBECOM.

[12] Tej Chajed, Joseph Tassarotti, Mark Theng, M Frans Kaashoek, and
Nickolai Zeldovich. 2022. Verifying the {DaisyNFS} concurrent and
crash-safe file system with sequential reasoning. In USENIX OSDI.

[13] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay
İleri, Adam Chlipala, M Frans Kaashoek, and Nickolai Zeldovich. 2017.
Verifying a high-performance crash-safe file system using a tree speci-
fication. In ACM SOSP.

[14] Hao Chen, Xiongnan Wu, Zhong Shao, Joshua Lockerman, and
Ronghui Gu. 2016. Toward compositional verification of interruptible
OS kernels and device drivers. In ACM PLDI.

[15] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M Frans
Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare logic for
certifying the FSCQ file system. In ACM SOSP.

[16] David Costanzo, Zhong Shao, and Ronghui Gu. 2016. End-to-end
verification of information-flow security for C and assembly programs.
ACM SIGPLAN Notices (2016).

[17] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT
solver. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems.

[18] Mihai Dobrescu and Katerina Argyraki. 2014. Software Dataplane
Verification. In USENIX NSDI.

[19] R. Elz. 1997. Clarifications to the DNS Specification. RFC 2181. https:
//www.rfc-editor.org/info/rfc2181

[20] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu
Guo. 2015. Deep Specifications and Certified Abstraction Layers. In
ACM POPL.

[21] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jie-
ung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An
Extensible Architecture for Building Certified Concurrent OS Kernels..
In USENIX OSDI.

[22] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan Wu, Jérémie Koenig,
Vilhelm Sjöberg, Hao Chen, David Costanzo, and Tahina Ramananan-
dro. 2018. Certified concurrent abstraction layers. ACM SIGPLAN
Notices (2018).

[23] Xiaojie Guo, Maxime Lesourd, Mengqi Liu, Lionel Rieg, and Zhong
Shao. 2019. Integrating formal schedulability analysis into a verified
OS kernel. In International Conference on Computer Aided Verification.
Springer, 496–514.

[24] Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz Arzani, Todd Mill-
stein, and George Varghese. 2020. Groot: Proactive verification of dns
configurations. In ACM SIGCOMM.

[25] Siva Kesava Reddy Kakarla, Ryan Beckett, Todd Millstein, and George
Varghese. 2022. {SCALE}: Automatically Finding {RFC} Compliance
Bugs in {DNS} Nameservers. In USENIX NSDI.

[26] James C King. 1976. Symbolic execution and program testing. Commun.
ACM (1976).

[27] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Compre-
hensive formal verification of an OS microkernel. ACM Transactions
on Computer Systems (2014).

[28] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, et al. 2009. seL4: Formal verification of an
OS kernel. In ACM SOSP.

[29] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In International
symposium on code generation and optimization, 2004. CGO 2004. IEEE.

[30] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM (2009).

[31] E. Lewis. 1997. The Role of Wildcards in the Domain Name System. RFC
4592. https://www.rfc-editor.org/info/rfc4592

[32] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang
Hui. 2021. A secure and formally verified Linux KVM hypervisor. In
IEEE Symposium on Security and Privacy.

[33] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh,
Yousuf Sait, and Gareth Stockwell. 2022. Design and Verification
of the Arm Confidential Compute Architecture. In USENIX OSDI.

[34] Mengqi Liu, Lionel Rieg, Zhong Shao, Ronghui Gu, David Costanzo,
Jung-Eun Kim, and Man-Ki Yoon. 2019. Virtual timeline: a formal ab-
straction for verifying preemptive schedulers with temporal isolation.
ACM POPL (2019).

[35] Mengqi Liu, Zhong Shao, Hao Chen, Man-Ki Yoon, and Jung-Eun Kim.
2022. Compositional virtual timelines: verifying dynamic-priority
partitions with algorithmic temporal isolation. Proceedings of the ACM
on Programming Languages OOPSLA (2022).

[36] Paul Mockapetris. 1987. Domain names-concepts and facilities. RFC
1034. https://www.rfc-editor.org/rfc/rfc1034

[37] Paul V Mockapetris. 1987. Domain names-implementation and speci-
fication. https://www.rfc-editor.org/rfc/rfc1035

[38] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Tim-
othy Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein.
2013. seL4: from general purpose to a proof of information flow en-
forcement. In IEEE Symposium on Security and Privacy.

[39] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, and Xi Wang. 2019. Scaling symbolic evaluation for automated
verification of systems code with Serval. In ACM SOSP.

[40] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel: Push-
button verification of an OS kernel. In ACM SOSP.

[41] Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. 2020.
Specification and verification in the field: Applying formal methods to
BPF just-in-time compilers in the Linux kernel. In USENIX OSDI.

[42] Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. 2002. Is-
abelle/HOL: a proof assistant for higher-order logic.

[43] NMap. 2023. NMap DNS Fuzzing. https://nmap.org/nsedoc/scripts/
dns-fuzz.html

[44] Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens,
Ming Fu, Antonio Paolillo, Lilith Oberhauser, Koustubha Bhat,
Yuzhong Wen, Haibo Chen, Jaeho Kim, et al. 2021. VSync: push-
button verification and optimization for synchronization primitives
on weak memory models. In ACM ASPLOS.

[45] Oded Padon, Kenneth L McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. 2016. Ivy: safety verification by interactive general-
ization. In ACM PLDI.

[46] Aurojit Panda, Mooly Sagiv, and Scott Shenker. 2017. Verification in
the age of microservices. In ACM SIGOPS HotOS Workshop.

[47] Thomas Sewell, Felix Kam, and Gernot Heiser. 2016. Complete, high-
assurance determination of loop bounds and infeasible paths forWCET
analysis. In IEEE Real-Time and Embedded Technology and Applications
Symposium.

[48] Thomas Arthur Leck Sewell, Magnus O Myreen, and Gerwin Klein.
2013. Translation validation for a verified OS kernel. In ACM PLDI.

[49] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Born-
holt, Emina Torlak, and XiWang. 2018. Nickel: A framework for design
and verification of information flow control systems. In USENIX OSDI.

[50] Robert Swiecki and Anestis Bechtsoudis. 2020. Google Honggfuzz
DNS Fuzzing. https://github.com/google/honggfuzz/tree/master/
examples/bind

[51] Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Jason Nieh, and
Ronghui Gu. 2021. Formal verification of a multiprocessor hypervisor
on arm relaxed memory hardware. In ACM SOSP.

94

https://www.rfc-editor.org/info/rfc2181
https://www.rfc-editor.org/info/rfc2181
https://www.rfc-editor.org/info/rfc4592
https://www.rfc-editor.org/rfc/rfc1034
https://www.rfc-editor.org/rfc/rfc1035
https://nmap.org/nsedoc/scripts/dns-fuzz.html
https://nmap.org/nsedoc/scripts/dns-fuzz.html
https://github.com/google/honggfuzz/tree/master/examples/bind
https://github.com/google/honggfuzz/tree/master/examples/bind

SOSP ’23, October 23–26, 2023, Koblenz, Germany N. Zheng et al.

[52] Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Jason Nieh, and
Ronghui Gu. 2021. Formal verification of a multiprocessor hypervisor
on arm relaxed memory hardware. In ACM SOSP.

[53] Emina Torlak and Rastislav Bodik. 2013. Growing solver-aided lan-
guages with Rosette. In ACM international symposium on New ideas,
new paradigms, and reflections on programming & software.

[54] Emina Torlak and Rastislav Bodik. 2014. A lightweight symbolic
virtual machine for solver-aided host languages. ACM SIGPLANNotices
(2014).

[55] P. Vixie. 1997. Dynamic Updates in the Domain Name System (DNS
UPDATE). RFC 2136. https://www.rfc-editor.org/info/rfc2136

[56] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. 2022. {DuoAI}:
Fast, Automated Inference of Inductive Invariants for Verifying Dis-
tributed Protocols. In USENIX OSDI.

[57] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina Argyraki,
andGeorge Candea. 2017. A formally verifiedNAT. InACMSIGCOMM.

[58] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui Gu, and Haibo
Chen. 2019. Using concurrent relational logic with helpers for verifying
the AtomFS file system. In ACM SOSP.

95

https://www.rfc-editor.org/info/rfc2136

	Abstract
	1 Introduction
	2 Background
	3 Challenges with Verifying In-Production DNS Authoritative Engine
	3.1 Our Goals
	3.2 Preliminary: Refinement & Symbolic Execution
	3.3 Challenges with Adopting Layered Verification
	3.4 Low-Level Implementation Makes Automated Reasoning Difficult

	4 DNS-V Overview
	4.1 LLVM as Frontend
	4.2 Automated Refinement with Code Summary
	4.3 Overview of the DNS-V Workflow

	5 DNS-V Design and Implementation
	5.1 AbsLLVM Language and Memory Model
	5.2 Symbolic Execution on AbsLLVM
	5.3 Automated Summarization of Specifications
	5.4 Encoding Methodology
	5.5 Resolving Opaque Pointers and Bitcasts

	6 Verification of an In-Production DNS Authoritative Engine
	6.1 Specifications
	6.2 Defining Layers
	6.3 Abstraction of Lower-Layer Libraries
	6.4 Summarization of Resolution Logic
	6.5 Concrete Domain Tree

	7 Evaluation
	8 Deployment Experience
	9 Discussion
	10 Related Work
	11 Conclusion
	References

