
1

Automated Verification of an
In-Production DNS Authoritative Engine

Naiqian Zheng1*, Mengqi Liu2*, Yuxing Xiang1, Linjian Song2, Dong
Li2, Feng Han2, Nan Wang2, Yong Ma2, Zhuo Liang2, Dennis Cai2,

Ennan Zhai2, Xuanzhe Liu1, Xin Jin1

1 2

DNS

2

DNSDomain Name System is essential

www.google.com

142.251.46.196

DNS: Domain Name System
DNS translates domain names into IP addresses

3

DNSDomain Name System is essential

www.google.com

root

.com

google.com

Recursive Server Authoritative Server

.com

www.google.com

142.251.46.196

User

DNS: Domain Name System
DNS translates domain names into IP addresses

192.5.6.30

142.251.46.196

142.251.46.196

google.com

4

DNSDNS software is complex

Specification details:
Ø RFC 1034, 1035, 2136, 2181, 4592, etc.
Ø DNS Answer:

status + flags + answer + authority + additional section + …

5

DNSDNS software is complex

Specification details:
Ø RFC 1034, 1035, 2136, 2181, 4592, etc.
Ø DNS Answer:

status + flags + answer + authority + additional section + …

Implementation complexity:
Ø Bind9 (>50k LOC),

Alibaba Cloud DNS (>100k LOC)
Ø Frontend server, authentication, cache, …

6

DNSDNS failures lead to network outages

7

DNSHow to keep it reliable?

Testing Interactive
Verification

Push-button
Verification

Weak correctness guarantees Require manual proofs Too large

8

DNSVerifying the core: authoritative engine

DNS

Authoritative Recursive

Authoritative
engine

… …

How?

Verify Configuration:
 Groot, …

Verify Implementation:
 DNS-V

9

DNSChallenges of applying push-button verification

Layered
verification

layer-1
code

layer-1
spec

verifier

layer-2
code

layer-2
spec

layer-3
code

layer-3
spec

Ø Large scale
2,000+ LOC of Go code, 50+ functions
Path explosion, complicated encoding strategies

10

DNSChallenges of applying push-button verification

Ø Non-verification-friendly implementation
difficult to develop and maintain
correct specifications for layers

Layered
verification

layer-1
code

layer-1
spec

verifier

layer-2
code

layer-2
spec

layer-3
code

layer-3
spec

Ø Large scale
2,000+ LOC of Go code, 50+ functions
Path explosion, complicated encoding strategies

11

DNSChallenges of applying push-button verification

Ø Non-verification-friendly implementation
difficult to develop and maintain correct
specifications for layers

1. Unclean interface & function division

https://www.cs.columbia.edu/~rgu/RonghuiGu_files/certikos_layer.jpg

CertiKOS:
clean interface

12

DNSChallenges of applying push-button verification

1. Unclean interface & function division

func TreeSearch(domain Name, flag int)
(TreeNode, RetFlag){

if is_relevant(domain) {
// domain in zone file

} else {
// not relevant

}

// dispatch flags
switch flag {

// find wildcard? FQDN? NS? A?
}

// ...
}

In-production:
unclean interface

Ø Non-verification-friendly implementation
difficult to develop and maintain correct
specifications for layers

13

DNSChallenges of applying push-button verification

Abstraction

Code

Good Poor

1. Unclean interface & function division

2. Poor data structure encapsulation

Ø Non-verification-friendly implementation
difficult to develop and maintain correct
specifications for layers

External
Invoke

14

DNSChallenges of applying push-button verification

2. Poor data structure encapsulation

3. Complex low-level implementation

Intentionally choosing
raw bytes (instead of
high-level language
constructs) makes it
more complex.

Ø Non-verification-friendly implementation
difficult to develop and maintain correct
specifications for layers

1. Unclean interface & function division

15

DNSChallenges of applying push-button verification

Ø Verification can follow the rapid pace of
software iteration.

DNS

Ø Non-verification-friendly implementation
difficult to develop and maintain correct
specifications for layers

1. Unclean interface & function division

2. Poor data structure encapsulation

3. Complex low-level implementation

16

DNSAutomated refinement with code summary

Challenge 1:

Implementation

Automated verifier

SMT solver

Specification

✔ ✘

Unclean interface & function division
Hard to maintain correct specification

Basic refinement

17

DNSAutomated refinement with code summary

Implementation

Automated verifier

SMT solver Specification

Specification summarizationHard to maintain correct specifications?
Let the verifier help you!

Ø Symbolic execution, accumulate path conditions
and effects

Ø Represent behavior in abstract summary
specification

Unclean interface & function division
Hard to maintain correct specification

Challenge 1:

18

DNSAutomated refinement with code summary

Implementation

Automated verifier

SMT solver Specification

Specification summarization

Func match(NodePtr, nameLen, n0, n1, …) {
 if nameLen == 0 {
 NodePtr = NODE(".");
 return WILDCARD;
 } else {
 if n0 == int("com") {
 NodePtr = NODE(”com.");
 return EXACT;
 } else {
 NodePtr = NULL_NODE;
 return NOMATCH;
 }

}
}

Go Code

Unclean interface & function division
Hard to maintain correct specification

Effect

Input

Effect

Effect

Challenge 1:

19

DNSAutomated refinement with code summary

Implementation

Automated verifier

SMT solver Specification

Specification summarization

if (nameLen != 0 && n0 == int("com")){
match_result := EXACT;
match_NodePtr := NODE("com.");

}
else if (nameLen != 0 && n0 != int("com")){
 match_result := NOMATCH;

match_NodePtr := NULL_NODE;
}
else {

match_result := WILDCARD;
match_NodePtr := NODE(".");

} Specification

Unclean interface & function division
Hard to maintain correct specification

Path Condition

Effect

Challenge 1:

20

DNSAutomated refinement with code summary

How to get input-effect pairs?
Ø Stateless ->

 Infer inputs from function arguments.
Ø Limited effect patterns ->

 Infer effects with patterns of returning values,
 allocating new structures, appending to an array.

Implementation

Automated verifier

SMT solver Specification

Specification summarization

Unclean interface & function division
Hard to maintain correct specification

Challenge 1:

21

DNSFlexible memory model for partial abstraction

Challenge 2: Poor data structure encapsulation

Ø Do not have to abstract memory when direct access occurs.
Ø A flexible memory model for specifications and code.
Ø Memory model: non-overlapping nested blocks.

Concrete code: *p
 Abstract spec: rrset[1][idx]

Ø Each block contains an abstract array or struct, either concrete or abstract.

Partial abstraction is better than no abstraction!

22

DNSIntegration with manual abstractions

Challenge 3: Complex low-level implementation

Ø Manually designed abstractions for low-level
library modules.

Ø One-time effort (the underlying library rarely changes).
Ø Based on assumptions on code implementation.
Ø Domain specific primitives.

Manual abstraction based
on memory layout of Name

Too complex for the machine?
Let humans help!

23

DNSSummarized specification vs. manual specification

Ø Automated refinement with code summary
🌟 simple formulas and relatively large-size encodings

complex input arguments and unclear functionality
e.g., DNS matching operations

Ø Manual specification abstraction
🌟 concise and highly abstracted

complex internal logic but clear functionality
e.g., domain name comparison

24

DNSAn overview of DNS-V

Ø Divided into layers manually.

Ø Input:
code, verification config, specification

Ø Get a summarized specification
or verify a manual specification

25

DNSAn overview of DNS-V

26

DNSDNS-V implementation

Ø Implemented in 10,000 lines of Java
Ø LLVM IR as frontend input (generated by GoLLVM)
Ø Z3 SMT Solver as backend

Ø Support LLVM types and syntax
Ø Distinguish stack memory and heap memory in memory model
Ø Encode List with variable length
Ø …

Refer to our paper for details

27

DNSVerify an in-production DNS authoritative engine

Ø Code base:
2,000 lines of Go, stateless, no unbounded loops

Ø Modules:
Matching operations: summarized spec, evolving
Low-layer lib functions: manual spec, stable
LLVM Intrinsics, Go Runtime: trusted computing base
In-heap memory: from control plane, concrete

Ø Manual annotations:
assign types for Go interfaces
separate the code to be verified from the code base

28

DNSVerify an in-production DNS authoritative engine

Ø The top-level specification
A complete top-level specification that decides the authoritative
response for any query

Ø Functional correctness
Same as RFC standards

Ø Safety guarantee
No runtime error on any input

Functional correctness:

∀ 𝑟𝑒𝑞,
𝑠𝑝𝑒𝑐 𝑟𝑒𝑞 = 𝑐𝑜𝑑𝑒(𝑟𝑒𝑞)

Safety:

∀ 𝑟𝑒𝑞,
¬ 𝑐𝑜𝑑𝑒(𝑟𝑒𝑞) → 𝑐𝑟𝑎𝑠ℎ

29

DNS

Ø Removing unbounded loops,
making the program’s behavior finite.

Ø Avoiding reasoning on symbolic tree data,
simplifying the verification,
especially for specification summarization.

Ø Thousands of zone config by heuristics.

Verify an in-production DNS authoritative engine

Out of scope

We rely on the control plane to supply concrete in-
heap domain trees as the runtime environment.

30

DNSVerify an in-production DNS authoritative engine

Ø Prevented 10+ bugs in multiple versions and
participated in bug fixing and software evolving.

Ø Some bugs can not be fixed properly in one go.
Ø Fixing bugs produces new bugs.

Verification should follow the
pace of software evolving.

31

DNSVerify an in-production DNS authoritative engine

Ø Deployed in Alibaba Cloud DNS system for half a year.
Ø Verification effort: One person-week in avg.

 three person-days minimum Verification should follow the
pace of software evolving.

32

DNSFrom authoritative engine to more

Alibaba Cloud DNS
authoritative engine

DNS-VPoor interface
Poor encapsulation

Stateless
Finite statesDemands Prerequisites

33

DNSFrom authoritative engine to more

Alibaba Cloud DNS
authoritative engine

DNS-VPoor interface
Poor encapsulation

Stateless
Finite statesDemands Prerequisites

Alibaba Cloud DNS
recursive engine

Other DNS:
Bind, CoreDNS, …

34

DNSTake-away

Ø DNS-V is an automated verification tool for in-production DNS authoritative engines.
Ø DNS-V techniques

 Unclean function division --- Specification summarization
Poor data encapsulation --- Partial abstraction memory model
Complex lib function --- Abstract manual specification

Ø We verified an in-production DNS authoritative engine with DNS-V.

nq.zheng@pku.edu.cn
www.zhengnq.comThanks!

