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DNSDomain Name System is essential

www.google.com

142.251.46.196

DNS: Domain Name System
DNS translates domain names into IP addresses
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DNSDNS software is complex

Specification details: 
Ø RFC 1034, 1035, 2136, 2181, 4592, etc.
Ø DNS Answer: 

status + flags + answer + authority + additional section + …
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DNSDNS software is complex

Specification details: 
Ø RFC 1034, 1035, 2136, 2181, 4592, etc.
Ø DNS Answer: 

status + flags + answer + authority + additional section + …

Implementation complexity:
Ø Bind9 (>50k LOC), 

Alibaba Cloud DNS (>100k LOC)
Ø Frontend server, authentication, cache, …
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DNSDNS failures lead to network outages
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DNSHow to keep it reliable?

Testing Interactive 
Verification

Push-button 
Verification

Weak correctness guarantees Require manual proofs Too large
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DNSVerifying the core: authoritative engine 

DNS

Authoritative Recursive

Authoritative 
engine

… …

How?

Verify Configuration: 
      Groot, …

Verify Implementation: 
       DNS-V
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DNSChallenges of applying push-button verification 

Layered 
verification

layer-1 
code

layer-1 
spec

verifier

layer-2 
code

layer-2 
spec

layer-3 
code

layer-3 
spec

Ø Large scale
2,000+ LOC of Go code, 50+ functions
Path explosion, complicated encoding strategies
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DNSChallenges of applying push-button verification 

Ø Non-verification-friendly implementation
difficult to develop and maintain 
correct specifications for layers
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DNSChallenges of applying push-button verification 

Ø Non-verification-friendly implementation
difficult to develop and maintain correct 
specifications for layers

1. Unclean interface & function division

https://www.cs.columbia.edu/~rgu/RonghuiGu_files/certikos_layer.jpg

CertiKOS: 
clean interface
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DNSChallenges of applying push-button verification 

1. Unclean interface & function division

func TreeSearch(domain Name, flag int)         
(TreeNode, RetFlag){

if is_relevant(domain) {
// domain in zone file

} else {
// not relevant

}

// dispatch flags   
switch flag {

// find wildcard? FQDN? NS? A?
}

// ...
}

In-production: 
unclean interface

Ø Non-verification-friendly implementation
difficult to develop and maintain correct 
specifications for layers
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DNSChallenges of applying push-button verification 

Abstraction 

Code 

Good Poor 

1. Unclean interface & function division

2. Poor data structure encapsulation

Ø Non-verification-friendly implementation
difficult to develop and maintain correct 
specifications for layers

External
Invoke 
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DNSChallenges of applying push-button verification 

2. Poor data structure encapsulation

3. Complex low-level implementation 

Intentionally choosing 
raw bytes (instead of 
high-level language 
constructs) makes it 
more complex.

Ø Non-verification-friendly implementation
difficult to develop and maintain correct 
specifications for layers

1. Unclean interface & function division
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DNSChallenges of applying push-button verification 

Ø Verification can follow the rapid pace of 
software iteration.

DNS

Ø Non-verification-friendly implementation
difficult to develop and maintain correct 
specifications for layers

1. Unclean interface & function division

2. Poor data structure encapsulation

3. Complex low-level implementation 
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DNSAutomated refinement with code summary

Challenge 1:

Implementation

Automated verifier

SMT solver

Specification

✔     ✘

Unclean interface & function division
Hard to maintain correct specification

Basic refinement
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DNSAutomated refinement with code summary

Implementation

Automated verifier

SMT solver Specification

Specification summarizationHard to maintain correct specifications? 
Let the verifier help you!

Ø Symbolic execution, accumulate path conditions 
and effects

Ø Represent behavior in abstract summary 
specification

Unclean interface & function division
Hard to maintain correct specification

Challenge 1:
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DNSAutomated refinement with code summary

Implementation

Automated verifier

SMT solver Specification

Specification summarization

Func match(NodePtr, nameLen, n0, n1, …) {
    if nameLen == 0 {
        NodePtr = NODE(".");
        return WILDCARD;
    } else {
        if n0 == int("com") {
            NodePtr = NODE(”com.");
            return EXACT;
        } else {
            NodePtr = NULL_NODE;
            return NOMATCH;       
        }

}
}

Go Code

Unclean interface & function division
Hard to maintain correct specification

Effect

Input

Effect

Effect

Challenge 1:
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DNSAutomated refinement with code summary

Implementation

Automated verifier

SMT solver Specification

Specification summarization

if (nameLen != 0 && n0 == int("com")){
match_result := EXACT;
match_NodePtr := NODE("com.");

}
else if (nameLen != 0 && n0 != int("com")){
    match_result := NOMATCH;

match_NodePtr := NULL_NODE;
}
else {

match_result := WILDCARD;
match_NodePtr := NODE(".");

} Specification

Unclean interface & function division
Hard to maintain correct specification

Path Condition

Effect

Challenge 1:
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DNSAutomated refinement with code summary

How to get input-effect pairs?
Ø Stateless -> 

 Infer inputs from function arguments.
Ø Limited effect patterns -> 

 Infer effects with patterns of returning values,
        allocating new structures, appending to an array.

Implementation

Automated verifier

SMT solver Specification

Specification summarization

Unclean interface & function division
Hard to maintain correct specification

Challenge 1:
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DNSFlexible memory model for partial abstraction

Challenge 2: Poor data structure encapsulation

Ø Do not have to abstract memory when direct access occurs.
Ø A flexible memory model for specifications and code.
Ø Memory model: non-overlapping nested blocks.

Concrete code:  *p
 Abstract spec:    rrset[1][idx]

Ø Each block contains an abstract array or struct, either concrete or abstract.

Partial abstraction is better than no abstraction!
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DNSIntegration with manual abstractions

Challenge 3: Complex low-level implementation 

Ø Manually designed abstractions for low-level 
library modules.

Ø One-time effort (the underlying library rarely changes).
Ø Based on assumptions on code implementation.
Ø Domain specific primitives.

Manual abstraction based 
on memory layout of Name

Too complex for the machine?
Let humans help!
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DNSSummarized specification vs. manual specification

Ø Automated refinement with code summary
🌟 simple formulas and relatively large-size encodings

complex input arguments and unclear functionality
e.g., DNS matching operations

Ø Manual specification abstraction
🌟 concise and highly abstracted

complex internal logic but clear functionality
e.g., domain name comparison
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DNSAn overview of DNS-V

Ø Divided into layers manually.

Ø Input: 
code, verification config, specification

Ø Get a summarized specification 
or verify a manual specification
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DNSAn overview of DNS-V
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DNSDNS-V implementation

Ø Implemented in 10,000 lines of Java
Ø LLVM IR as frontend input (generated by GoLLVM)
Ø Z3 SMT Solver as backend

Ø Support LLVM types and syntax
Ø Distinguish stack memory and heap memory in memory model
Ø Encode List with variable length
Ø …

Refer to our paper for details
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DNSVerify an in-production DNS authoritative engine

Ø Code base:
2,000 lines of Go, stateless, no unbounded loops

Ø Modules: 
Matching operations: summarized spec, evolving
Low-layer lib functions: manual spec, stable
LLVM Intrinsics, Go Runtime: trusted computing base
In-heap memory: from control plane, concrete

Ø Manual annotations:
assign types for Go interfaces
separate the code to be verified from the code base 
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DNSVerify an in-production DNS authoritative engine

Ø The top-level specification
A complete top-level specification that decides the authoritative 
response for any query

Ø Functional correctness
Same as RFC standards

Ø Safety guarantee 
No runtime error on any input

Functional correctness:

∀ 𝑟𝑒𝑞,
𝑠𝑝𝑒𝑐 𝑟𝑒𝑞 = 𝑐𝑜𝑑𝑒(𝑟𝑒𝑞)

Safety:

∀ 𝑟𝑒𝑞,
¬ 𝑐𝑜𝑑𝑒(𝑟𝑒𝑞) → 𝑐𝑟𝑎𝑠ℎ
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DNS

Ø Removing unbounded loops, 
making the program’s behavior finite.

Ø Avoiding reasoning on symbolic tree data, 
simplifying the verification, 
especially for specification summarization.

Ø Thousands of zone config by heuristics.

Verify an in-production DNS authoritative engine

Out of scope

We rely on the control plane to supply concrete in-
heap domain trees as the runtime environment.
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DNSVerify an in-production DNS authoritative engine

Ø Prevented 10+ bugs in multiple versions and 
participated in bug fixing and software evolving.

Ø Some bugs can not be fixed properly in one go.
Ø Fixing bugs produces new bugs.

Verification should follow the 
pace of software evolving.



31

DNSVerify an in-production DNS authoritative engine

Ø Deployed in Alibaba Cloud DNS system for half a year.
Ø Verification effort: One person-week in avg. 

                            three person-days minimum Verification should follow the 
pace of software evolving.
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DNSFrom authoritative engine to more

Alibaba Cloud DNS 
authoritative engine

DNS-VPoor interface
Poor encapsulation

Stateless
Finite statesDemands Prerequisites
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DNSFrom authoritative engine to more

Alibaba Cloud DNS 
authoritative engine

DNS-VPoor interface
Poor encapsulation

Stateless
Finite statesDemands Prerequisites

Alibaba Cloud DNS 
recursive engine

Other DNS:
Bind, CoreDNS, …
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DNSTake-away

Ø DNS-V is an automated verification tool for in-production DNS authoritative engines.
Ø DNS-V techniques

    Unclean function division --- Specification summarization
Poor data encapsulation --- Partial abstraction memory model
Complex lib function --- Abstract manual specification

Ø We verified an in-production DNS authoritative engine with DNS-V.

nq.zheng@pku.edu.cn
www.zhengnq.comThanks!


