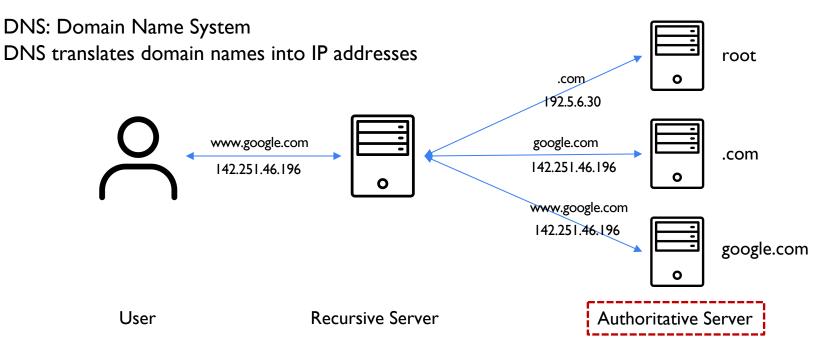


Automated Verification of an In-Production DNS Authoritative Engine

Naiqian Zheng^{1*}, Mengqi Liu^{2*}, Yuxing Xiang¹, Linjian Song², Dong Li², Feng Han², Nan Wang², Yong Ma², Zhuo Liang², Dennis Cai², Ennan Zhai², Xuanzhe Liu¹, Xin Jin¹

Domain Name System is essential

DNS: Domain Name System DNS translates domain names into IP addresses



Domain Name System is essential

3

DNS software is complex

; <<>> DiG 9.10.6 <<>> google.com ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8085 ;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 9					
;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 4096 ;; QUESTION SECTION:					
;google.com.		IN	А		
;; ANSWER SECTION: google.com.	254	IN	А	142.251.43.14	
;; AUTHORITY SECTION:					
google.com.	28492	IN	NS	ns1.google.com.	
google.com.	28492	IN	NS	ns2.google.com.	
google.com.	28492	IN	NS	ns3.google.com.	
google.com.	28492	IN	NS	ns4.google.com.	
;; ADDITIONAL SECTION:					
ns1.google.com.	110729	IN	А	216.239.32.10	
ns2.google.com.	110729	IN	А	216.239.34.10	
ns4.google.com.	110729	IN	А	216.239.38.10	
ns3.google.com.	110729	IN	A	216.239.36.10	
ns1.google.com.	110729	IN	AAAA	2001:4860:4802:32::a	
ns2.google.com.	110729	IN	AAAA	2001:4860:4802:34::a	
ns4.google.com.	110729	IN	AAAA	2001:4860:4802:38::a	
ns3.google.com.	110729	IN	AAAA	2001:4860:4802:36::a	

Specification details:

- RFC 1034, 1035, 2136, 2181, 4592, etc.
- DNS Answer:

status + flags + answer + authority + additional section + ...

DNS software is complex

; <<>> DiG 9.10.6 <<>> ;; global options: +cmu ;; Got answer: ;; ->>HEADER<<- opcode ;; flags: qr rd ra; QU	d : QUERY,	status:		id: 8085 NITY: 4, ADDITIONAL: 9
;; OPT PSEUDOSECTION: ; EDNS: version: 0, flo ;; QUESTION SECTION:	ags:; udp	: 4096		
;google.com.		IN	А	
;; ANSWER SECTION:				
google.com.	254	IN	А	142.251.43.14
;; AUTHORITY SECTION:				
google.com.	28492	IN	NS	ns1.google.com.
google.com.	28492	IN	NS	ns2.google.com.
google.com.	28492	IN	NS	ns3.google.com.
google.com.	28492	IN	NS	ns4.google.com.
;; ADDITIONAL SECTION:				
ns1.google.com.	110729	IN	А	216.239.32.10
ns2.google.com.	110729	IN	A	216.239.34.10
ns4.google.com.	110729	IN	А	216.239.38.10
ns3.google.com.	110729	IN	А	216.239.36.10
ns1.google.com.	110729	IN	AAAA	2001:4860:4802:32::a
ns2.google.com.	110729	IN	AAAA	2001:4860:4802:34::a
ns4.google.com.	110729	IN	AAAA	2001:4860:4802:38::a
ns3.google.com.	110729	IN	AAAA	2001:4860:4802:36::a

Specification details:

- RFC 1034, 1035, 2136, 2181, 4592, etc.
- DNS Answer:

status + flags + answer + authority + additional section + ...

Implementation complexity:

- Bind9 (>50k LOC),
 - Alibaba Cloud DNS (>100k LOC)
- Frontend server, authentication, cache, …

DNS failures lead to network outages

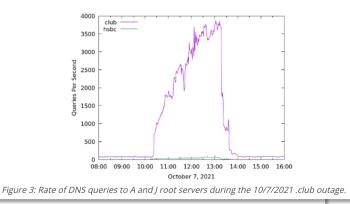
Security

A DNS outage just took down a large chunk of the internet

Zack Whittaker @zackwhittaker / 12:

Image Credits: Joe Raedle / Ge

2021 Facebook outage


Article Talk

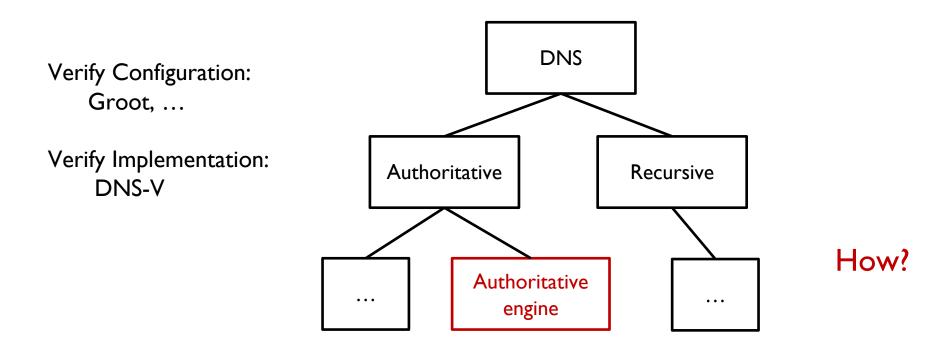
From Wikipedia, the free encyclopedia

On October 4, 2021, at 15:39 UTC, the social network Facebook and its subsidiaries, Messenger, Instagram, WhatsApp, Mapillary, and Oculus, became globally unavailable for a period of six to seven hours.^{[1][2][3]} The outage also prevented anyone trying to use "Log in with Facebook" from accessing third-party sites.^[4] It lasted for 7 hours and 11 minutes.

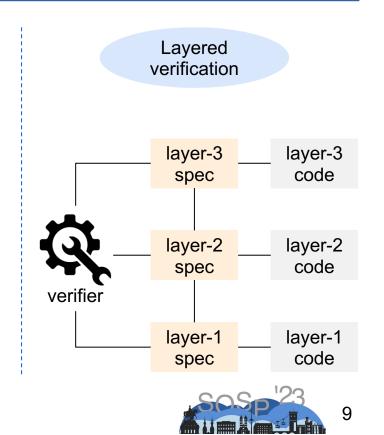
During the outage, many users flocked to Twitter, Discord, Signal, and Telegram, resulting in disruptions on these sites' servers.^[9] The outage was caused by the loss of IP routes to the Facebook Domain Name System (DNS) servers, which were all self-hosted at the time.^{[10][5]} Border Gateway Protocol (BGP) routing was restored for the affected prefixes at about 21:50, and DNS services began to be available again at 22:05 UTC, with application-layer services gradually restored to Facebook, Instagram, and WhatsApp over the following hour, with service generally restored for users by 22:50.^[11] .CLUB

On Oct. 7th, 2021, three days after Facebook's outage, the .club and .hsbc TLDs also experienced a three-hour outage. In this case, the relevant authoritative servers remained reachable, but responded with SERVFAIL messages. The effect on recursive resolvers was essentially the same: Since they did not receive useful data, they repeatedly retried their queries to the parent zone. During the incident, the Verisign-operated A-root and J-root servers observed an increase in queries for .club domain names of 45x, from 80 queries per second before, to 3,700 queries per second during the outage.

How to keep it reliable?

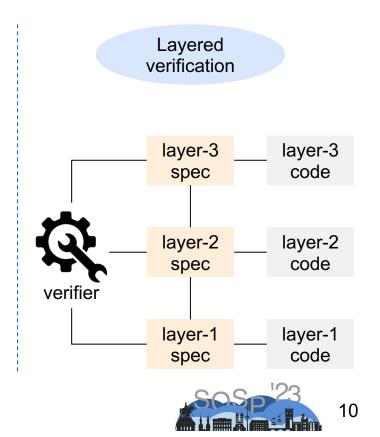


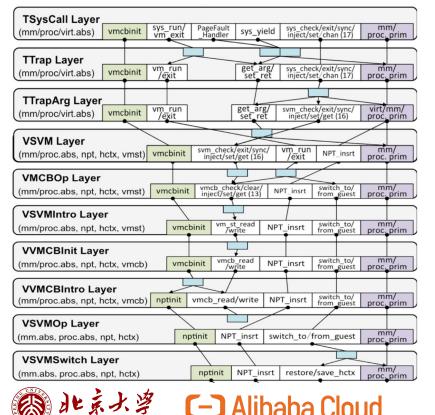
Verifying the core: authoritative engine



Large scale

2,000+ LOC of Go code, 50+ functions Path explosion, complicated encoding strategies




Large scale

2,000+ LOC of Go code, 50+ functions Path explosion, complicated encoding strategies

Non-verification-friendly implementation difficult to develop and maintain correct specifications for layers

PEKING UNIVERSITY

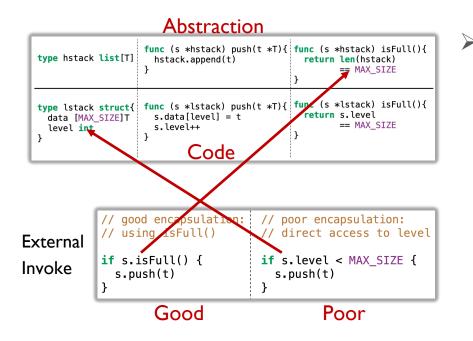
 Non-verification-friendly implementation difficult to develop and maintain correct specifications for layers

I. Unclean interface & function division

CertiKOS: clean interface

https://www.cs.columbia.edu/~rgu/RonghuiGu_files/certikos_layer.jpg


```
func TreeSearch(domain Name, flag int)
                   (TreeNode, RetFlag){
    if is relevant(domain) {
      // domain in zone file
    } else {
      // not relevant
    // dispatch flags
    switch flag {
      // find wildcard? FQDN? NS? A?
    // ...
}
```


Non-verification-friendly implementation difficult to develop and maintain correct specifications for layers

I. Unclean interface & function division

In-production: unclean interface

 Non-verification-friendly implementation difficult to develop and maintain correct specifications for layers

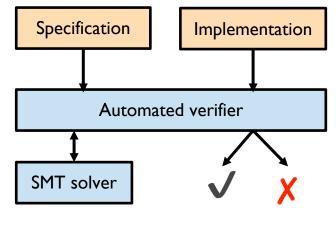
- I. Unclean interface & function division
- 2. Poor data structure encapsulation

 Non-verification-friendly implementation difficult to develop and maintain correct specifications for layers

- I. Unclean interface & function division
- 2. Poor data structure encapsulation
- 3. Complex low-level implementation

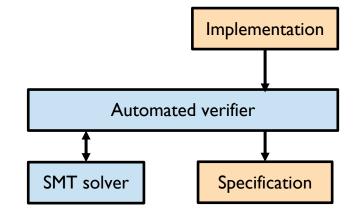
14

- Verification can follow the rapid pace of software iteration.
- Non-verification-friendly implementation difficult to develop and maintain correct specifications for layers


- 2. Poor data structure encapsulation
- 3. Complex low-level implementation

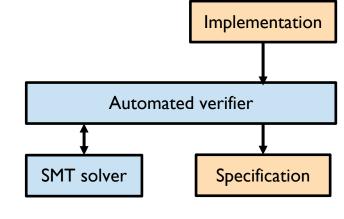
DNS

Basic refinement

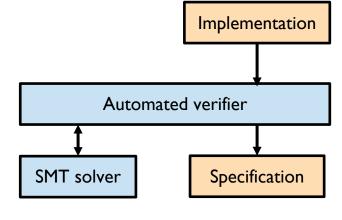


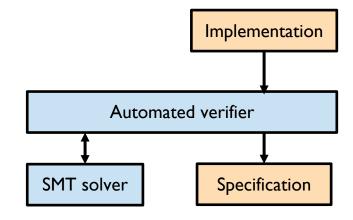
- Symbolic execution, accumulate path conditions and effects
- Represent behavior in abstract summary specification

Hard to maintain correct specifications? Let the verifier help you!




```
Func match(NodePtr, nameLen, n0, n1, ...) { Input
    if nameLen == 0 {
       NodePtr = NODE("."); Effect
        return WILDCARD;
    } else {
        if n0 == int("com") {
            NodePtr = NODE("com."); Effect
            return EXACT;
        } else {
            NodePtr = NULL NODE;
            return NOMATCH; Effect
        }
                                     Go Code
}
```


- Alibaba Cloud


How to get input-effect pairs?

Stateless ->

Infer inputs from function arguments.

Limited effect patterns ->

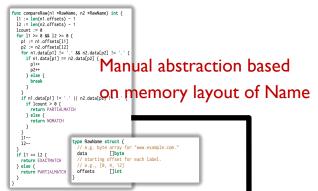
Infer effects with patterns of returning values, allocating new structures, appending to an array.

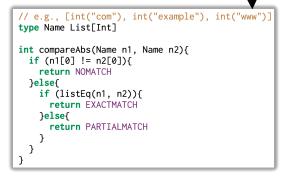
Challenge 2: Poor data structure encapsulation

- Do not have to abstract memory when direct access occurs.
- > A flexible memory model for specifications and code.
- Memory model: non-overlapping nested blocks.
 - Concrete code: *p
 - Abstract spec: rrset[1][idx]
- Each block contains an abstract array or struct, either concrete or abstract.

Partial abstraction is better than no abstraction!

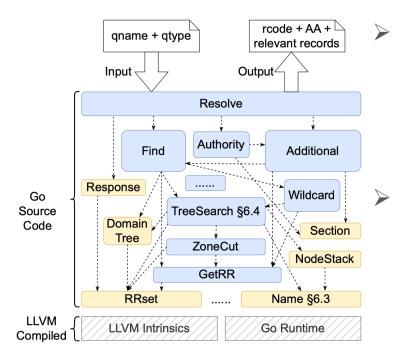
Integration with manual abstractions


Challenge 3: Complex low-level implementation


- Manually designed abstractions for low-level library modules.
- One-time effort (the underlying library rarely changes).
- Based on assumptions on code implementation.
- Domain specific primitives.

Too complex for the machine?

Let humans help!



Summarized specification vs. manual specification $DNS\sqrt{}$

Automated refinement with code summary simple formulas and relatively large-size encodings complex input arguments and unclear functionality e.g., DNS matching operations

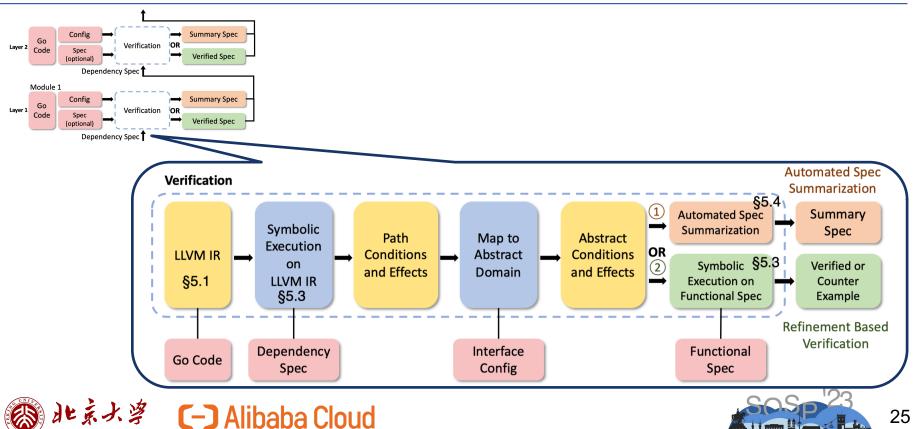
- Manual specification abstraction
 - concise and highly abstracted

complex internal logic but clear functionality

e.g., domain name comparison

An overview of DNS-V

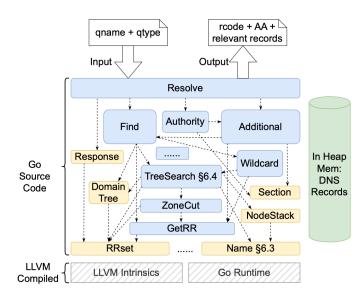
- Divided into layers manually.
- Input: code, verification config, specification
- Get a summarized specification or verify a manual specification



An overview of DNS-V

PEKING UNIVERSITY

DNS-V implementation


- Implemented in 10,000 lines of Java
- LLVM IR as frontend input (generated by GoLLVM)
- Z3 SMT Solver as backend

 \triangleright

- Support LLVM types and syntax
- Distinguish stack memory and heap memory in memory model
- Encode List with variable length
 - Refer to our paper for details

Code base:

2,000 lines of Go, stateless, no unbounded loops

Modules:

Matching operations: summarized spec, evolving Low-layer lib functions: manual spec, stable LLVM Intrinsics, Go Runtime: trusted computing base In-heap memory: from control plane, concrete

Manual annotations:

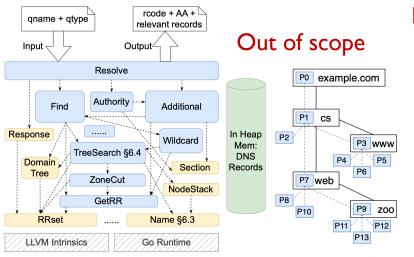
assign types for Go interfaces separate the code to be verified from the code base

Verify an in-production DNS authoritative engine $DNS\sqrt{}$

Functional correctness:

 \forall req, spec(req) = code(req)

Safety:


 $\forall req, \\ \neg(code(req) \rightarrow crash)$

The top-level specification
 A complete top-level specification that decides the authoritative response for any query

- Functional correctness
 Same as RFC standards
- Safety guarantee
 No runtime error on any input

We rely on the control plane to supply concrete inheap domain trees as the runtime environment.

- Removing unbounded loops, making the program's behavior finite.
- Avoiding reasoning on symbolic tree data, simplifying the verification, especially for specification summarization.
- Thousands of zone config by heuristics.

Index	Codebase Version	Classification	Description
1	1.0 Wrong Flag		AA flag missing for certain authoritative answers
2	1.0	Wrong AuthorityExtraneous NS/SOA authority	
3	1.0 Wrong Answe		Incorrect resource record matching on MX
4	2.0	Wrong Additional	Incomplete glue for certain queries
5	2.0	Wrong Additional	Incomplete glue when handling wildcard
6	2.0	Wrong Answer/rcode	Incorrect domain tree search for certain wildcard domains
7	2.0	Wrong Additional	Extraneous records in the additional section
8	3.0/dev	Wrong Answer/rcode	Incorrect judgments on certain wildcard domains
9	dev	Runtime Error	Incomplete bug fix may cause invalid memory access

- Prevented 10+ bugs in multiple versions and participated in bug fixing and software evolving.
- Some bugs can not be fixed properly in one go.
- Fixing bugs produces new bugs.

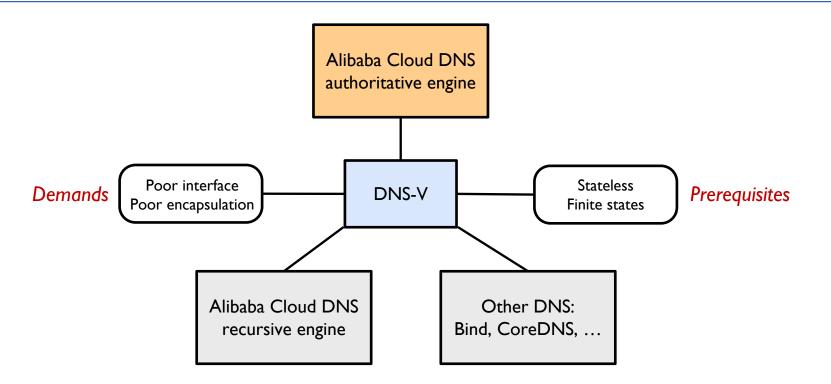
Verification should follow the pace of software evolving.

Index	Codebase Version	Classification	Description
1	1.0	Wrong Flag	AA flag missing for certain authoritative answers
2	1.0	Wrong Authority	Extraneous NS/SOA authority
3	1.0	Wrong Answer	Incorrect resource record matching on MX
4	2.0	Wrong Additional	Incomplete glue for certain queries
5	2.0	Wrong Additional	Incomplete glue when handling wildcard
6	2.0	Wrong Answer/rcode	Incorrect domain tree search for certain wildcard domains
7	2.0	Wrong Additional	Extraneous records in the additional section
8	3.0/dev	Wrong Answer/rcode	Incorrect judgments on certain wildcard domains
9	dev	Runtime Error	Incomplete bug fix may cause invalid memory access

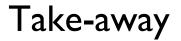
- Deployed in Alibaba Cloud DNS system for half a year.
- Verification effort: One person-week in avg.
 three person-days minimum


Verification should follow the pace of software evolving.

From authoritative engine to more



32


From authoritative engine to more

- > DNS-V is an automated verification tool for in-production DNS authoritative engines.
- DNS-V techniques

Unclean function division --- Specification summarization

Poor data encapsulation --- Partial abstraction memory model

Complex lib function --- Abstract manual specification

> We verified an in-production DNS authoritative engine with DNS-V.

Thanks!

nq.zheng@pku.edu.cn www.zhengnq.com

