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MeshTestService mesh

Benefits:
less maintenance costs
better reliance
better observability
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MeshTest

Ø Service mesh is the “narrow waist” of microservice communication

Service mesh

widely used by industrypopular on GitHub integrated in clouds
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MeshTest

Ø Service mesh is the “narrow waist” of microservices communication

Service mesh

widely used by industrypopular on GitHub integrated in clouds

Ø Service mesh functionalities:
○ Traffic Management: service routing, load balancing, A/B testing ...
○ Authentication
○ Security
○ Observability
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MeshTest

Input: communication configuration

(tens of CRDs, millions of options)

Service mesh is complex
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Credit to istio: https://istio.io/latest/about/service-mesh/
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MeshTestService mesh is complex

Controller

Service B

Proxy
ingress egress

forwarding rules
Control plane

Data plane

Configuration

Output: network behavior

(abstract, logics for arbitrary reqeusts)

Code base: extremely complex

(1,000+ components, 300,000+ lines of code)

Service A

Proxy

Input: communication configuration

(tens of CRDs, millions of options)

Complexity always brings bugs!
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MeshTestService mesh is buggy

A bug found from istio by MeshTest
Ø Same host + different port => does not work
Ø Caused by incorrect rule merge in EDS

Reported in https://github.com/istio/istio/issues/49550
Fixed in https://github.com/istio/istio/pull/49595🎉

https://github.com/istio/istio/issues/49550
https://github.com/istio/istio/pull/49595
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MeshTestExisting tests are not sufficient

Ø Existing tests
○ A lot of unit tests 

(Istio has 10,000+ unit tests)

○ Very few end-to-end tests 
(Istio has 160 e2e tests, Linkerd has 30 e2e tests)
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MeshTestExisting tests are not sufficient

Ø Existing tests
○ A lot of unit tests 

(Istio has 10,000+ unit tests)

○ Very few end-to-end tests 
(Istio has 160 e2e tests, Linkerd has 30 e2e tests)

Ø End-to-end testing is effective for the interactions between functions

Ø Simple in end-to-end testing
Ø Difficult for unit testing

Since it is caused by rule merging between two functions
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MeshTestEnd-to-end testing is challenging

Two steps testing
Ø Step 1: service mesh configuration generation
Ø Step 2: network behavior checking

Controller
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Proxy
ingress egress

forwarding rules

Configuration

Service

Proxy

Input
Ø configurations describing network functions

Output
Ø network behaviors for requests
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MeshTestEnd-to-end testing is challenging

Challenge 1:
The input configurations must be end-to-end effective

If all requests cannot go to egress service, 
the input is NOT end-to-end effective.
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MeshTestEnd-to-end testing is challenging

Ø The configuration must orchestrate functions
to compose end-to-end service flow paths

Ø Each function needs to pass validation rules

Ø Symbolic execution?
1 million+ options explodes

Ø Fuzzing?
challenging to compose e2e service flow paths
not easy to pass constraint validation

Challenge 1:
The input configurations must be end-to-end effective

If all requests cannot go to egress service, 
the input is NOT end-to-end effective.
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MeshTestEnd-to-end testing is challenging

Challenge 2:
The output correctness cannot be directly judged

Service B
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Ø Correct network behavior means that 
the service mesh can correctly process any requests

Ø One request is handled correctly does not mean that 
all requests will be handled correctly.
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MeshTestEnd-to-end testing is challenging

Service B

Proxy
ingress egress

Service A

Proxy

Ø Correct network behavior means that 
the service mesh can correctly process any requests

Ø One request is handled correctly does not mean that 
all requests will be handled correctly

We need to ...
Ø Choose a comprehensive set of requests that is

capable to represent all requests
Ø Infer the correct processing behaviors of each 

representative request

The checker should be automatic

Challenge 2:
The output correctness cannot be directly judged
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MeshTestMeshTest: end-to-end testing service mesh

End-to-end 
configuration 
generation

Automatic 
service mesh 
oracle checking
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MeshTestStage 1: service flow exploration

Ø We start from service flows – the key of end-to-end input configuration

Ø Domain specific service flow skeleton abstraction
○ Which resources are used in the configuration
○ How resources transmit requests for service flow

Ø Skeletons reveal interactions between resources
○ priority competition
○ request handover

Goal: create e2e service flowsservice
flow
path
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MeshTestStage 1: service flow exploration

Goal: create various skeletons

service
flow
path

Ø Insight: vulnerable resource interactions
Ø Generate skeletons to cover all resource interactions
Ø Details

○ Start from interaction seed
○ Extend to entry and exit side
○ Compose complete service flow skeleton

Ø Open to other heuristic seeds

Goal: create e2e service flows
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MeshTestStage 2: service flow filling

Ø Fill connector fields to realize resource interactions
Ø Extend configurations with more options

○ by constraint based fuzzing

Ø More details in out paper...

Goal: transform skeleton into complete configuration
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MeshTestStage 3: fine-grained model

Goal: select a comprehensive set of requests to check

Ø Input generator: stage 1 + stage 2
Ø Oracle: check whether service mesh realizes input 

configuration correctly

Ø Stage 3 models accurate behaviors with CFG
Ø Each path represents a unique request
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MeshTestStage 3: fine-grained model

Goal: select a comprehensive set of requests to check

Ø Automatic interpreters: configuration => CFG
Ø The retrofitting effort is less than 2 person-weeks

Ø We built interpreters for istio and linkerd
Ø We provide MeshTest CFG APIs for other systems
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MeshTestStage 4: symbolic execution

Ø Symbolic execution on CFG
○ solves ingress and reference egress

Ø Test driver
○ check actual ?= reference

Ø Properties
○ liveness: no panic or error
○ correctness: consistent with CFG model

Goal: check result of requests
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MeshTestMeshTest workflow
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MeshTestEvaluation

MeshTest has found 
23 new bugs
19 confirmed 
10 fixed
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MeshTestEvaluation

Ø Testing coverage
○ 100% coverage on functionalities specified in pairwise resource interactions
○ Istio TM overall: 74.1% (w/o MeshTest) => 78.8% (w/ MeshTest)
○ Istio interaction overall: 70.9% (w/o MeshTest) => 79.4% (w/ MeshTest)

Ø Efficiency:
○ 2500 configurations per second (input generator)
○ 29 different requests to check one configuration (oracle)
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MeshTestA real bug found by MeshTest

Ø curl foo/api returns 404 error
Ø The bug occurs when:

1. two resources with same host but different rules
2. higher priority one has a delegation rule

Fixed in istio 1.20.4

MeshTest found this bug by:
1. generating configuration containing the interaction
2. creating a real request hitting the rule
3. detecting difference between actual and reference
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MeshTestConclusion

Ø MeshTest is the first automatic end-to-end testing framework for traffic 
management of service mesh

Ø MeshTest is composed by
○ an end-to-end input generator for service mesh
○ a service mesh oracle based on symbolic execution
○ they can work seperately!

Ø MeshTest has found 23 new bugs (19 confirmed, 10 fixed)
Ø Available at https://github.com/pkusys/meshtest/

https://github.com/pkusys/meshtest/
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