
1

MeshTest: End-to-End Testing
for Service Mesh Traffic Management

Naiqian Zheng, Tianshuo Qiao, Xuanzhe Liu, Xin Jin

Peking University



2

MeshTestService mesh

Gateway

Auth

PaymentGeo Info

Reserve

RPC

RPC RPC

RPC RPC

Requests from user

Communication is implemented in services



3

MeshTestService mesh

Gateway

Auth

PaymentGeo Info

Reserve

RPC

RPC RPC

RPC RPC

Service mesh takes over communication

Auth

Payment

Geo Info

Reserve

Service
Mesh

Gateway

Requests from user

Requests from user

Communication is implemented in services



4

MeshTestService mesh

Benefits:
less maintenance costs
better reliance
better observability

Gateway

Auth

PaymentGeo Info

Reserve

RPC

RPC RPC

RPC RPC

Requests from user

Communication is implemented in services Service mesh takes over communication

Auth

Payment

Geo Info

Reserve

Service
Mesh

Gateway

Requests from user



5

MeshTest

Ø Service mesh is the “narrow waist” of microservice communication

Service mesh

widely used by industrypopular on GitHub integrated in clouds



6

MeshTest

Ø Service mesh is the “narrow waist” of microservices communication

Service mesh

widely used by industrypopular on GitHub integrated in clouds

Ø Service mesh functionalities:
○ Traffic Management: service routing, load balancing, A/B testing ...
○ Authentication
○ Security
○ Observability



7

MeshTest

Input: communication configuration

(tens of CRDs, millions of options)

Service mesh is complex

Controller

Service B

Proxy
ingress egress

forwarding rules
Control plane

Data plane

Configuration

Output: network behavior

(abstract, logics for arbitrary reqeusts)

Service A

Proxy

Credit to istio: https://istio.io/latest/about/service-mesh/



8

MeshTestService mesh is complex

Controller

Service B

Proxy
ingress egress

forwarding rules
Control plane

Data plane

Configuration

Output: network behavior

(abstract, logics for arbitrary reqeusts)

Code base: extremely complex

(1,000+ components, 300,000+ lines of code)

Service A

Proxy

Input: communication configuration

(tens of CRDs, millions of options)

Complexity always brings bugs!



9

MeshTestService mesh is buggy

A bug found from istio by MeshTest
Ø Same host + different port => does not work
Ø Caused by incorrect rule merge in EDS

Reported in https://github.com/istio/istio/issues/49550
Fixed in https://github.com/istio/istio/pull/49595🎉

https://github.com/istio/istio/issues/49550
https://github.com/istio/istio/pull/49595


10

MeshTestExisting tests are not sufficient

Ø Existing tests
○ A lot of unit tests 

(Istio has 10,000+ unit tests)

○ Very few end-to-end tests 
(Istio has 160 e2e tests, Linkerd has 30 e2e tests)



11

MeshTestExisting tests are not sufficient

Ø Existing tests
○ A lot of unit tests 

(Istio has 10,000+ unit tests)

○ Very few end-to-end tests 
(Istio has 160 e2e tests, Linkerd has 30 e2e tests)

Ø End-to-end testing is effective for the interactions between functions

Ø Simple in end-to-end testing
Ø Difficult for unit testing

Since it is caused by rule merging between two functions



12

MeshTestEnd-to-end testing is challenging

Two steps testing
Ø Step 1: service mesh configuration generation
Ø Step 2: network behavior checking

Controller

Service B

Proxy
ingress egress

forwarding rules

Configuration

Service

Proxy

Input
Ø configurations describing network functions

Output
Ø network behaviors for requests



13

MeshTestEnd-to-end testing is challenging

Challenge 1:
The input configurations must be end-to-end effective

If all requests cannot go to egress service, 
the input is NOT end-to-end effective.



14

MeshTestEnd-to-end testing is challenging

Ø The configuration must orchestrate functions
to compose end-to-end service flow paths

Ø Each function needs to pass validation rules

Ø Symbolic execution?
1 million+ options explodes

Ø Fuzzing?
challenging to compose e2e service flow paths
not easy to pass constraint validation

Challenge 1:
The input configurations must be end-to-end effective

If all requests cannot go to egress service, 
the input is NOT end-to-end effective.



15

MeshTestEnd-to-end testing is challenging

Challenge 2:
The output correctness cannot be directly judged

Service B

Proxy
ingress egress

Service A

Proxy

Ø Correct network behavior means that 
the service mesh can correctly process any requests

Ø One request is handled correctly does not mean that 
all requests will be handled correctly.



16

MeshTestEnd-to-end testing is challenging

Service B

Proxy
ingress egress

Service A

Proxy

Ø Correct network behavior means that 
the service mesh can correctly process any requests

Ø One request is handled correctly does not mean that 
all requests will be handled correctly

We need to ...
Ø Choose a comprehensive set of requests that is

capable to represent all requests
Ø Infer the correct processing behaviors of each 

representative request

The checker should be automatic

Challenge 2:
The output correctness cannot be directly judged



17

MeshTestMeshTest: end-to-end testing service mesh

End-to-end 
configuration 
generation

Automatic 
service mesh 
oracle checking



18

MeshTestStage 1: service flow exploration

Ø We start from service flows – the key of end-to-end input configuration

Ø Domain specific service flow skeleton abstraction
○ Which resources are used in the configuration
○ How resources transmit requests for service flow

Ø Skeletons reveal interactions between resources
○ priority competition
○ request handover

Goal: create e2e service flowsservice
flow
path



19

MeshTestStage 1: service flow exploration

Goal: create various skeletons

service
flow
path

Ø Insight: vulnerable resource interactions
Ø Generate skeletons to cover all resource interactions
Ø Details

○ Start from interaction seed
○ Extend to entry and exit side
○ Compose complete service flow skeleton

Ø Open to other heuristic seeds

Goal: create e2e service flows



20

MeshTestStage 2: service flow filling

Ø Fill connector fields to realize resource interactions
Ø Extend configurations with more options

○ by constraint based fuzzing

Ø More details in out paper...

Goal: transform skeleton into complete configuration



21

MeshTestStage 3: fine-grained model

Goal: select a comprehensive set of requests to check

Ø Input generator: stage 1 + stage 2
Ø Oracle: check whether service mesh realizes input 

configuration correctly

Ø Stage 3 models accurate behaviors with CFG
Ø Each path represents a unique request



22

MeshTestStage 3: fine-grained model

Goal: select a comprehensive set of requests to check

Ø Automatic interpreters: configuration => CFG
Ø The retrofitting effort is less than 2 person-weeks

Ø We built interpreters for istio and linkerd
Ø We provide MeshTest CFG APIs for other systems



23

MeshTestStage 4: symbolic execution

Ø Symbolic execution on CFG
○ solves ingress and reference egress

Ø Test driver
○ check actual ?= reference

Ø Properties
○ liveness: no panic or error
○ correctness: consistent with CFG model

Goal: check result of requests



24

MeshTestMeshTest workflow



25

MeshTestEvaluation

MeshTest has found 
23 new bugs
19 confirmed 
10 fixed



26

MeshTestEvaluation

Ø Testing coverage
○ 100% coverage on functionalities specified in pairwise resource interactions
○ Istio TM overall: 74.1% (w/o MeshTest) => 78.8% (w/ MeshTest)
○ Istio interaction overall: 70.9% (w/o MeshTest) => 79.4% (w/ MeshTest)

Ø Efficiency:
○ 2500 configurations per second (input generator)
○ 29 different requests to check one configuration (oracle)



27

MeshTestA real bug found by MeshTest

Ø curl foo/api returns 404 error
Ø The bug occurs when:

1. two resources with same host but different rules
2. higher priority one has a delegation rule

Fixed in istio 1.20.4

MeshTest found this bug by:
1. generating configuration containing the interaction
2. creating a real request hitting the rule
3. detecting difference between actual and reference



28

MeshTestConclusion

Ø MeshTest is the first automatic end-to-end testing framework for traffic 
management of service mesh

Ø MeshTest is composed by
○ an end-to-end input generator for service mesh
○ a service mesh oracle based on symbolic execution
○ they can work seperately!

Ø MeshTest has found 23 new bugs (19 confirmed, 10 fixed)
Ø Available at https://github.com/pkusys/meshtest/

https://github.com/pkusys/meshtest/


29

MeshTest: End-to-End Testing for Service Mesh Traffic Management

Naiqian Zheng
www.zhengnq.com

Thanks!

http://www.zhengnq.com/

